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In this Supplementary Material, we first provide the
proof of the properties of LCRF in Sec. A. Additional ex-
periments are presented in Sec. B for further analysis. Next,
we summarize the limitation of our work in Sec. C. Finally,
we show more visualization results on LCRF and LRF built
by the Gram-Schmidt process for comparison in Sec. D.

A. Proofs of LCRF Properties

In this section, we analyze the orthogonality of ur,1 and ur,2
in LCRF and the rotation invariance in Eq. 13 of the main
text.

A.1. Orthogonality of ur,1 and ur,2 in LCRF

Theorem 1. Given two normalized vectors ṽr,1, ṽr,2 ∈
R3×1, with θ ∈ (0, π2 ) being half the angle between them,
ur,1 and ur,2 in LCRF, defined as follows, are orthogonal:

sin θ =

√
1− ṽTr,1ṽr,2

2
, cos θ =

√
1 + ṽTr,1ṽr,2

2
, (1)

vr =
(ṽr,1 + ṽr,2)

∥ṽr,1 + ṽr,2∥
(sin θ + cos θ), (2)

ur,1 =
vr − ṽr,1
∥vr − ṽr,1∥

, ur,2 =
vr − ṽr,2

∥vr − ṽr,2∥
. (3)

Proof. Fig. 1 illustrates our LCRF. The orthogonality
of non-zero vectors ur,1 and ur,2 depends on whether
uTr,1ur,2 = 0. To demonstrate this, we first compute
uTr,1ur,2:

uTr,1ur,2 =
(vr − ṽr,1)

T

∥vr − ṽr,1∥
(vr − ṽr,2)

∥vr − ṽr,2∥
. (4)
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For brevity, we only focus on the numerator in Eq. 4, which
can be written as:

(vr − ṽr,1)
T (vr − ṽr,2) = vTr vr − vTr ṽr,2 − ṽTr,1vr

+ ṽTr,1ṽr,2.
(5)

From Eq. 1, ṽTr,1ṽr,2 can be derived by:

ṽTr,1ṽr,2 = 2cos2θ − 1. (6)

From Eq. 2 and Eq. 6, we can derive vTr vr, vTr ṽr,2 and
ṽTr,1vr separately:

vTr vr =
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(sin θ + cos θ)

=
(ṽTr,1ṽr,2 + 1)√
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Thus, we can proceed to derive:
(vr − ṽr,1)

T (vr − ṽr,2) = vTr vr − vTr ṽr,2 − ṽTr,1vr + ṽTr,1ṽr,2

= (sin θ + cos θ)2 − cos θ(sin θ + cos θ)

− cos θ(sin θ + cos θ) + 2cos2θ − 1

= 1 + 2 sin θ cos θ − 2cos2θ − 2 sin θ cos θ

+ 2cos2θ − 1

= 0,
(8)

which can be used to derive:

uTr,1ur,2 =
(vr − ṽr,1)

T

∥vr − ṽr,1∥
(vr − ṽr,2)

∥vr − ṽr,2∥
= 0. (9)

Therefore, ur,1 and ur,2 are orthogonal.

Figure 1. Illustration of LCRF.

A.2. Rotation Invariance in Eq. 13 of the main text

To prove the rotation invariance in Eq. 13 of the main text,
we begin with analyzing how LCRF introduces rotation
invariance since the local rotation-invariant representation
UT
r p is the input of the equation. The detailed proof is

shown as follows.
Theorem 2. For any reference point pr and its K neigh-
bors {pj}Kj=1, the equation defined as follows can achieve
rotation invariance under arbitrary rotation R ∈SO(3):

xr = max
j∈N (pr)

ψ(UT
r pr, U

T
r (pj − pr)), (10)

where Ur is LCRF, N (·) denotes the KNN operation
invariant to rotation, and ψ represents a MLP.

Proof. For a point p ∈ P , when applying a random
rotation matrix R to it, for an equivariant feature v, we
have:

v∗ = h(Rp) = Rh(p) = Rv, (11)

where h(·) is the equivariant network and the superscript
∗ indicates that the result corresponds to the rotated input.
ṽr = [ṽr,1, ṽr,2] is the equivariant feature used to construct
LCRF, so it also satisfies:

ṽ∗r = Rṽr = [Rṽr,1, Rṽr,2]. (12)

Therefore, for Eq. 1, Eq. 2 and Eq. 3 we have:
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(13)
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For LCRF Ur = [ur,1, ur,2, ur,1 × ur,2], it satisfies:

U∗
r = [u∗r,1, u

∗
r,2, u

∗
r,1 × u∗r,2]

= [Rur,1, Rur,2, Rur,1 ×Rur,2]

= RUr,

(16)

which can be used to achieve rotation invariance through:

U∗
r
TRp = (RUr)

T
Rp = Ur

TRTRp = UT
r p. (17)

Hence, we can derive:

x∗r = max
j∈N (Rpr)

ψ(U∗
r
TRpr, U

∗
r
T (Rpj −Rpr))

= max
j∈N (pr)

ψ(Ur
T pr, Ur

T (pj − pr))

= xr,

(18)

which proves Eq. 10 can achieve rotation invariance.

B. Additional Experiments
B.1. Semantic Segmentation

Dataset. The S3DIS [1] dataset consists of 6 large-scale
indoor areas with 271 rooms in 13 categories. Following
previous work [7], we select Area-5 for testing, while the
other five areas are used for training.
Results. Given that few works perform experiments on
S3DIS, we compare our method with our backbone. As
shown in Tab. 1, DGCNN [8] struggles to process complex
scene-level data under arbitrary rotations, and our method
outperforms it by a large margin, especially in the z/SO(3)
setting. The results indicate that our LocoTrans can also
work on large-scale point cloud data.



Method Input z/SO(3) SO(3)/SO(3)
mIOU Accuracy mIOU Accuracy

DGCNN [8] pc 3.0 18.1 42.8 80.7
Ours pc 54.2 84.8 56.0 84.7

Table 1. Semantic segmentation results on S3DIS dataset, which
are reported by mIOU (%) and accuracy (%) separately.

Figure 2. Visualization of u1
r (Red) and u2

r (Green) in LRF under
perturbation.

σ 0 0.01 0.02 0.03
G-S 91.3 85.9 74.0 46.0

LCRF 91.6 86.8 77.1 48.5

N 0 100 200 300
G-S 91.3 87.1 80.1 71.6

LCRF 91.6 87.2 80.3 72.4

Table 2. Classification accuracy (%) under different scales of
noises σ (Left) and number of dropout points N (Right) on Mod-
elNet40 z/SO(3) setting. G-S represents LRF built from Gram-
Schmidt process.

B.2. Performance under Various Perturbations

In Tab. 2, we evaluate the performance of our LCRF and
LRF built from Gram-Schmidt process under perturbations
by introducing noise and random dropout. Despite both
methods showing decreased performance under perturba-
tions, our LCRF consistently outperforms Gram-Schmidt
process. Moreover, the visualization in Fig. 2 shows that
LCRF still maintains a degree of local consistency in both
u1r (Red) and u2r (Green). We further try to introduce noises
during training to improve the robustness on noised data,
getting 88.7% with our LCRF and 88.3% with LRF from
Gram-Schmidt process for σ = 0.03. It shows training
with noises benefits the performance on noised data and our
LCRF still performs better.

B.3. Robustness to the Number of Neighbours

The number of neighbors in KNN operation determines the
scope of local feature extraction. We conduct experiments
to investigate the robustness of LocoTrans to the number of
neighbors. As shown in Tab. 3, our method achieves the
best performance with K = 20.

Number of neighbors K = 10 K = 20 K = 40
Ours 91.3 91.6 90.8

Table 3. Classification accuracy (%) under different neighbor size
K on ModelNet40 z/SO(3) setting.

B.4. More Backbones

We further conduct experiments to investigate the robust-
ness of other mainstream point cloud analysis models to
rotations and explore the effects of LocoTrans on these
backbones. In Tab. 4, we introduce three networks: 1)
PointNet++ [6], a classic framework using PointNet [5] as
local extractors, 2) the attention-based method PCT [3],
which captures relationships between points well, and 3)
PointMLP [4], which gives a pure residual MLP to replace
sophisticated local extractors. Although these backbones
can achieve state-of-the-art on the well-aligned data, they
fail to accurately classify the rotated data in z/SO(3) set-
ting. In contrast, their performance is significantly im-
proved when using our LocoTrans. The results show that
mainstream point cloud models lack rotation robustness,
and LocoTrans can effectively address this issue.

Row Backbone
z/SO(3)

w/o LocoTrans w LocoTrans
#1 PointNet++ [6] 28.6 90.7
#2 PCT [3] 25.6 90.7
#3 PointMLP [4] 31.1 91.1

Table 4. Classification accuracy (%) on ModelNet40 z/SO(3) set-
ting. ‘w/o LocoTrans’ denotes not using LocoTrans while ‘w Lo-
coTrans’ represents applying LocoTrans on these backbones.

B.5. Model Output

Here we analyze three types of outputs from the invari-
ant branch, the equivariant branch, and fusion in our net-
work. From Tab. 5, we can see fusion can significantly
improve performance under different datasets and differ-
ent settings. In addition, for z/SO(3) and SO(3)/SO(3) set-
tings, both invariant branch and equivariant branch achieve
similar performance in ModelNet40 while they suffer from
performance fluctuation in ScanObjectNN, especially the
equivariant branch. We guess the reason is that we use
the vector-based equivariant network [2] as our equivariant
branch, which combines input vectors linearly to achieve
equivariance and thus has limited learning ability. Hence,
facing changes in randomness brought by different rotations
in two settings, equivariant branch cannot achieve relatively
stable and consistent performance in ScanObjectNN con-
taining background noise.

C. Limitation
Although efficient, our approach may encounter a potential
challenge when handling real-world data containing back-
ground noise. LocoTrans relies on equivariant features and
as a result, its performance might be influenced by the effi-
cacy of the equivariant branch. As mentioned in Sec. B.5,



Source ModelNet40 ScanObjectNN
z/SO(3) SO(3)/SO(3) z/SO(3) SO(3)/SO(3)

invariant branch 90.6 90.4 82.3 83.1
equivariant branch 90.2 90.3 79.2 76.9

fusion 91.6 91.5 85.0 84.5

Table 5. Classification accuracy (%) on ModelNet40 dataset and
ScanObjectNN dataset.

due to limited learning ability and changes in randomness,
our equivariant branch suffers from performance fluctuation
under z/SO(3) and SO(3)/SO(3) settings in ScanObjectNN,
hindering our network from yielding better performance on
both settings. In future work, we aim to improve the equiv-
ariant branch to address this issue.

D. Visualization
Here, we provide additional visualization results of LRF
built by the Gram-Schmidt process and our LCRF in
Fig. 3(a) and Fig. 3(b) separately. The results demonstrate
that our method achieves local consistency along different
axes (Red and Green), while the previous LRF only works
effectively along one axis (Red).
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Figure 3. Visualization of the learned orientations for the LRF built by the Gram-Schmidt process and our LCRF.
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