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A. Experimental Details
A.1. Fine-tuning Details

Due to the different network architectures of different types
of models, we trained different parts of the parameters for
them. The rationale behind parameter selection for training
is corroborated by empirical experiments detailed further in
the text.
• For the training phases specific to BSRGAN, Real-

ESRGAN+, and SwinIR-GAN, selective freezing of ini-
tial layers is implemented to concentrate training on the
deeper parameters.

• In the case of FeMaSR, which is based on the VQ-
GAN (Vector Quantized Generative Adversarial Net-
work) structure, the focus is placed on the parameters of
the VQGAN encoder.

• StableSR, which utilizes a pre-trained diffusion model,
applies a controllable feature wrapping (CFW) module
with an adjustable coefficient to refine the outputs of the
diffusion model during the decoding process of the au-
toencoder. We choose to fine-tune the designed Collabo-
rative Feature Weighting module and part of the encoder.
It usually takes 150 to 500 iterations to train. The time

depends on the baseline network size, ranging from seconds
to a few minutes. Our method can be fine-tuned either on in-
dividual images or on the entire test set assuming consistent
degradation across the test set, which greatly reduces com-
putational cost. Table 7 shows that our method takes only
8 minutes to fine-tune on the whole test set, much faster
than others. Individual fine-tuning can improve the results
if needed.

A.2. Testing Datasets

The validation of the effectiveness of our training method in
real-world scenarios is conducted using real-world paired
datasets, RealSR [4], and DRealSR [47]. These datasets
are meticulously curated from various sensors to reflect dif-
ferent degradation characteristics inherent in each device.
Furthermore, the datasets are segmented based on the cap-
turing equipment. For RealSR, a 2× scale factor is em-
ployed, with separate subsets for Canon and Nikon. In the
case of DRealSR, a 4× scale is applied across three subsets
corresponding to Sony, Panasonic, and Olympus. To en-
sure a fair comparison with other models, we follow com-
mon settings employed by most methods. Each image is
segmented into multiple smaller patches for performing 4×
super-resolution, with the patch size for LR images being

LPIPS↓ DISTS↓ PSNR↑ fine-tuning time↓
Ours (d = 2048) 0.1629 0.1630 29.56 8 min
ZSSR 0.2424 0.1889 29.14 19 hr
KernelGAN+ZSSR 0.3315 0.2774 23.52 72 hr
deep plug-and-play 0.2604 0.2524 29.44 1.4 hr
deep image prior 0.2091 0.2054 29.32 28 hr

Table 7. Our method can be fine-tuned on the entire test set as-
suming consistent degradation across the test set, which greatly
reduces computational cost. Other methods need to be trained on
each individual image.

128×128 and for HR images being 512×512.

A.3. Evaluation Metrics

Following prior research [16, 18], our study adopts a care-
fully curated set of perceptual metrics, ones that have shown
a higher correlation with human perception, including
Learned Perceptual Image Patch Similarity (LPIPS) [51],
Deep Image Structure and Texture Similarity (DISTS) [13],
and Normalized Laplacian Pyramid Distance (NLPD) [17].
LPIPS and DISTS have been empirically validated in [16,
18] as more closely aligned with human visual assess-
ment than other metrics. We also include traditional met-
rics, such as Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM) [46], and most apparent distortion
(MAD) [23].

A previous study [16, 18] investigated the correlation be-
tween human visual perception quality of images and var-
ious Image Quality Assessment (IQA) metrics, with the
findings summarized in the Table 8. The experimental re-
sults reveal that MAD, LPIPS, and DISTS outperform tradi-
tional PSNR and SSIM across various aspects in the context
of super-resolution evaluation. Specifically, MAD demon-
strates superior accuracy in assessing traditional SR meth-
ods. On the other hand, both LPIPS and DISTS exhibit
higher precision when evaluating GAN-based SR methods.
In the overall comparison, DISTS emerges as the most ef-
fective metric for super-resolution assessment. These find-
ings underscore the limitations of relying solely on con-
ventional metrics such as PSNR and SSIM, emphasizing
the importance of incorporating newer metrics like MAD,
LPIPS, and DISTS for a more comprehensive and accurate
evaluation of super-resolution techniques.



Method SR Full Traditional SR PSNR. SR GAN-based SR

PSNR 0.4099 0.4782 0.5462 0.2839
SSIM 0.5209 0.5856 0.6897 0.3388
MAD 0.5424 0.6720 0.7575 0.3494

LPIPS 0.5614 0.5487 0.6782 0.4882
DISTS 0.6544 0.6685 0.7733 0.5527

Table 8. The Spearman rank correlation coefficient (SRCC) be-
tween MOS (Mean Opinion Score) and various IQA (Image Qual-
ity Assessment) metrics across different distortion sub-types.

B. LR Reconstruction Network
B.1. Degradation Encoder

Following the methodology proposed by Liu et al. [35],
our degradation encoder is constructed by integrating a
pre-trained SR-GAN model [24] and downsampling layers.
This collaborative framework aims to produce degradation
embeddings, denoted as e, with a dimensionality of 512.
The choice of a relatively small dimension for e ensures
that the degradation embeddings do not encapsulate intrin-
sic image information but are sufficiently representative of
content pertaining specifically to the degradation process.
This design principle is crucial in isolating and preserving
only the features relevant to degradation, avoiding contam-
ination with the original image characteristics.

B.2. Reconstructor

In our methodology, we incorporate a modulation-
demodulation-convolution strategy reminiscent of Instance
Normalization as employed in StyleGAN2 [19]. This ap-
proach effectively utilizes the degradation embedding e to
facilitate LR reconstruction when combined with the SR
network’s output ISR. To delve deeper into the specifics of
this strategy, during modulation, a style is learned from the
provided degradation embedding e. The modulation opera-
tion scales each input feature map of the convolution using
the acquired style, as denoted by the equation

wijk = si · wijk,

the variables w and w′ represent the original and modulated
weights, respectively. The scale factor, denoted as si, cor-
responds to the ith input feature map. The indices j and
k are used to iterate over the output feature maps and spa-
tial footprint of the convolution, respectively. This mod-
ulation process ensures that the convolutional features are
adaptively adjusted based on the characteristics embedded
in the degradation embedding. Following modulation, a de-
modulation step is executed to obtain the demodulated con-
volution weights, represented as

w′′
ijk =

w′
ijk√∑

i,k w
′
ijk

2 + ϵ
.
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Figure 10. Modulation method used in our LR reconstructor.

The primary objective of demodulation is to restore the out-
puts to a unit standard deviation, providing stability and nor-
malizing the feature representations. It is crucial to empha-
size that this modulation-demodulation-convolution strat-
egy facilitates the integration of degradation-specific infor-
mation into the LR reconstruction process. The adaptability
of the convolutional features based on the learned style en-
sures that the network can effectively reconstruct LR inputs,
enhancing the overall performance of the SR framework.

C. More Experiment Results
C.1. The Effect of Fine-tuning Parameters for Dif-

ferent Network Architecture.

In our exploration of parameter fine-tuning, we observe that
increasing the number of trained parameters of BSRGAN
results in higher PSNR values. However, the LPIPS score
reaches its optimal point at approximately 60% - 70% of
the parameters, as depicted in Figure 11. Considering the
limitation of PSNR, we prioritize the use of LPIPS as our
reference. It’s important to note that different network and
testsets may yield varied conclusions. In our investigation
into the impact of training parameters on the performance of
the FeMaSR and SwinIR networks, the influence is shown
in Figure 12 and Figure 13. Specifically, for the FeMaSR
network, the optimal PSNR is achieved when training pa-
rameters constitute 86%, while the optimal LPIPS is ob-
tained at 100%. In contrast, SwinIR attains the best PSNR
and LPIPS values almost simultaneously at 100% of train-
ing parameters.

C.2. Ablation on Model Size

Table 9 delineates the efficacy of our proposed model across
a spectrum of sizes, demonstrating that our method retains
robust performance notwithstanding the model’s capacity.
From a comprehensive model with 12.9 million parameters
to a compact version with merely 495 thousand parameters,
our approach consistently outperforms the baseline.

C.3. Performance on Different Degradation

Table 10 demonstrates the robustness of our ’LWay’ method
in handling various types of image degradations. It presents
notable improvements in PSNR and reductions in LPIPS



Figure 11. The performance curve for fine-tuning different per-
centages of parameters for BSRGAN.

Figure 12. The performance curve for fine-tuning different per-
centages of parameters for FeMaSR.

Figure 13. The performance curve for fine-tuning different per-
centages of parameters for SwinIR.

Paras FLOPS PSNR↑ MAD↓ LPIPS↓ DISTS↓
baseline - - 28.13 118.48 0.2302 0.2102
+ LWay (Large) 12.9 M 589.4 G 28.85 104.71 0.1722 0.1772
+ LWay (Medium) 5.38 M 117.6 G 29.50 99.76 0.1798 0.1810
+ LWay (Small) 2.77 M 44.49 G 28.69 106.42 0.1837 0.1862
+ LWay (Tiny) 495 K 19.38 G 28.70 104.92 0.1808 0.1842

Table 9. The performence of different model size. LWay is
not contingent on the parameter count of the LR reconstruction,
demonstrating effectiveness even with a small parameter volume.

real-world degradation synthetic, blur 17×17 synthetic, blur 11×11 synthetic, JPEG q = 15

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

baseline 28.13 0.2302 27.55 0.4065 27.5 0.3922 26.60 0.4240
+LWay (d=2048) 29.56 0.1629 28.39 0.2755 29.02 0.2265 26.85 0.3122

Table 10. Performance on different degradation. LWay improve
image quality under a range of degradations.

for both real-world degradation and synthetic distortions
such as blurring and JPEG compression, signifying our
method’s efficacy in maintaining image integrity across dif-
ferent degradation scenarios.

D. More Visual Results
D.1. LR Reconstruction Visualization

The visual outcomes of the LR reconstruction network are
illustrated in Figure 14, encompassing HR, LR, and the re-

constructed LR images. Notably, our network demonstrates
the capability to restore LR images that closely approxi-
mate the ground truth LR by extracting a 512-dimensional
degradation embedding solely from the LR input and sub-
sequently integrating it with the HR image. This process
demonstrates the effectiveness of our LR reconstruction ap-
proach in achieving visually compelling results. The show-
cased robustness of our LR reconstruction network is partic-
ularly noteworthy. Given that the transition from HR to LR
is generally considered easier compared to the reverse pro-
cess, our method exhibits a heightened degree of resilience
with limited data. Leveraging only a finite dataset, our ap-
proach achieves a robust performance, underscoring its ca-
pacity to generalize and adapt well to diverse LR input sce-
narios.

D.2. More Visual Comparison

Figure 15 and Figure 16 provide additional comparisons of
our proposed method with other state-of-the-art (sota) ap-
proaches. Our method excels in effectively restoring the
texture and fine details of images. In contrast, DASR, Diff-
BIR, and StableSR tend to produce smoother results at the
expense of losing texture details. ZSSR, on the other hand,
exhibits limited restoration capabilities, resulting in less
clear outcomes that are less faithful to the LR input. The
results generated by LDM display inconsistencies in tex-
ture details compared to the ground truth. DARSR, while
prone to failure and introducing significant color bias, and
CAL GAN both exhibit varying degrees of artifacts in their
outputs. These visual comparisons underscore the superior
performance of our proposed method in preserving intri-
cate details and textures during the super-resolution process.
The tendency of other methods to sacrifice fine details for
smoother results, introduce artifacts, or inaccurately repre-
sent texture details highlights the unique strengths of our
approach.

E. Discussion
Differences to optimization-based methods.
Optimization-based methods, relying on pre-defined
degradation models or downsampling operators, have
limited capabilities in handling complex degradation. They
are also time-consuming and difficult with large data. In
contrast, our approach incorporates a more general and
robust degradation modeling. Moreover, our method mar-
ries the benefits of supervised and unsupervised training,
outperforming optimization-based methods that only use
test images.
Differences to KernelGAN. KernelGAN’s discriminator
only makes binary judgments (0/1), while LWay uses pixel-
level regression to better capture the distribution. Moreover,
local KernelGAN’s kernels have limited information and ro-
bustness in real-world, while our embedding has richer ex-
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Figure 14. Visual results of LR reconstruction. For instance, given an input LR image and HR image, the degradation encoder encodes a
512-dimension degradation embedding e, the reconstructor utilizes e and the HR image to reconstruct the estimated LR image.

ternal priors rather than relying on solely learning test im-
ages and is robust as demonstrated by validation.

F. Limitation
The proposed architecture excels in extracting and restoring
information from low-resolution (LR) images, especially
when they contain discernible texture details. It is within
these conditions that our method showcases its maximum
effectiveness. However, a limitation might arise when the
LR images themselves lack texture details, impeding the
model’s capability to execute effective restoration.
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Figure 15. More visual comparisons.
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Figure 16. More visual comparisons.
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