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In this supplementary material, we provide more detailed
information to complement the main manuscript. Specif-
ically, we first conduct more ablation studies to analyze
our method, by using Stable Diffusion (SD) inpainting re-
sults [3] as explicit prior for Remove-NeRF [5] and SPIn-
NeRF [2]. Then, we formulate a depth SDS to further ex-
plain why we use the normal map as a geometry represen-
tation to distill knowledge from the pre-trained diffusion
model. Next, we provide the additional controllability of
our method, more qualitative results, and failure cases. Fi-
nally, we report the specific parameter configurations uti-
lized in optimizing each NeRF scene from both datasets.

1. Comparisons with SD inpainting prior
Note that both Remove-NeRF and SPIn-NeRF leverage
LaMa [4] for independent inpainting across multiple views,
followed by the optimization of NeRF scenes. While LaMa
has demonstrated superior quantitative performance, as re-
ported in [1, 3], we conduct an additional comparison with
SPIn-NeRF + SD and Remove-NeRF + SD. As reported
in Table 1, we observe that: i) the SD-based inpainting
method may not improve the LaMa-based version, and ii)
our method still shows better performance than the SD-
based inpainting approaches.

2. Depth SDS
As stated in our main paper, we incorporate a geometry dif-
fusion prior to ensure a valid and coherent geometry in the
inpainted region. We use normal SDS to distill geometry
information from diffusion prior. So, a natural question is:
why not define a depth SDS? Actually, in our early test, we
also formulated the depth SDS as follows:
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where d denotes the rendered depth map.
Fig. 1 presents the inpainting results with normal SDS

and depth SDS. It is evident that the depth SDS result ex-
hibits depth residuals in the inpainted regions, and displays

a certain degree of edge distortion in its color images. This
observation highlights the challenges associated with depth
SDS. We argue that the less satisfactory performance of
depth SDS can be attributed to the inherent limitation of
depth values in conveying comprehensive geometry infor-
mation, as opposed to surface normals which more clearly
reveal the geometric structures.

3. Controlibility

An additional significant capability of our method is the
generation of novel content within the masked region in
the 3D scene, which we refer to as controllability. Exam-
ples illustrating this capability are presented in Fig.2. It is
noteworthy that [1] also possesses the ability to insert novel
content into the 3D scene by providing a different inpainted
reference image. In our case, controllability is achieved by
supplying a distinct text prompt and a large classifier-free
guidance (CFG) value (set to 25 for all results).

It is essential to acknowledge that, due to our method’s
reliance on the SDS loss, the generated contents may not
exhibit the same level of realism as [1], which employs
realistic inpainted images. The inherent differences in the
approaches highlight the trade-offs between controllability
and photorealism in content generation within 3D scenes.
How to better utilize diffusion to solve this problem would
be an interesting direction.

4. Run time

As indicated in the main paper, our method, due to its re-
liance on the diffusion model, requires more time and mem-
ory resources. Specifically, for each scene in Real-S (image
resolution: 1008 × 567), our model can be trained with 2
v100 GPUs and consumes approximately 6 hours of com-
putation with 10, 000 iterations. In contrast, Remove-NeRF
and SPIn-NeRF, employing a random batching scheme, can
operate on a single GPU and complete the task in less than
1 hour. We can alleviate this problem by feeding the down-
scaled rendered image into a diffusion model.
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Table 1. Comparison with state-of-the-art methods with different 2D inpaiting methods. Our method is relatively better compared to
other novel-view synthesis baselines in inpainting the missing regions of the scene.

Real-S Real-L

PSNR↑ LPIPS↓ FID↓ Depth L2 ↓ PSNR↑ LPIPS↓ FID↓ Depth L2 ↓

Remove-NeRF + LaMa [5] 17.556 0.665 254.345 8.748 25.176 0.187 88.245 0.038
Remove-NeRF + SD [5] 17.381 0.677 245.941 9.997 24.612 0.201 110.817 0.029
SPIn-NeRF + LaMa [2] 17.466 0.574 239.990 1.534 25.403 0.215 103.573 0.090
SPIn-NeRF + SD [2] 17.497 0.604 227.243 1.610 25.102 0.194 108.286 0.089
Ours 17.667 0.507 255.514 1.499 25.690 0.181 100.452 0.021
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Figure 1. Comparison of depth SDS and our normal SDS. For each scene, we generate RGB images and depth maps for two novel views.
Notably, the result of depth SDS reveals limitations in geometry recovery and introduces color distortions. Yellow arrows indicate the less
pleasing regions.

5. Failure cases

In scenarios where a scene has very large undesired areas,
and these areas are difficult to adequately describe with tex-
tual cues, our method may exhibit a tendency to generate
blurred results. This limitation arises from the inherent dif-
ficulty in capturing fine details or specific features when the
inpainting task involves extensive and complex regions that
lack clear descriptive cues from external prompts. One po-
tential direction for improvement is to use more accurate
masks so that more information can be exploited.

6. More visual results

More detailed qualitative results for several challenging
cases are demonstrated in Fig. 4. We show the inpainted re-
sults from two novel different viewpoints. We can observe
that our approach not only excels in recovering large miss-
ing regions but also demonstrates proficiency in restoring
intricate textures and maintaining well-aligned geometries.

7. Evaluation settings and more quantitative
results

Due to the potential influence of the underlying NeRF ar-
chitecture, in our evaluation settings, we replaced the un-
masked region of the rendered images with their ground
truth. Thus, only the masked region contributes to the fi-
nal error. Observing that the masking scheme (whether the
unmasked region is set to 0 or GT) and the LPIPS version
(VGG or Alex) can affect the results, we report more de-
tailed results in Table 2.

8. Detailed parameter settings

Given that our method is tailored to leverage the text-
to-image diffusion model, we provide detailed parame-
ters for each scene in Table 3, including the inputted text
prompt, classifier-free guidance (CFG) for multi-view SDS,
and CFG for normal SDS. This provides a comprehensive
overview of the input configurations.
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Figure 2. Controlibility of our method. Our method can yield different inpainting results by setting different text prompts.
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Figure 3. Failure case. The input is a scene with very large undesired areas, and these areas are difficult to adequately describe with a
textual prompt (“a group of metal poles sitting on an outdoor floor”), our method may exhibit a tendency to generate blurred results.
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Figure 4. More visual results on different scenes. For each scene, we present inpainted results from two novel viewpoints. It is noteworthy
that our approach not only excels in recovering large missing regions but also demonstrates proficiency in restoring intricate textures and
maintaining well-aligned geometries.

Table 2. LPIPS results computed by different evaluation schemes. Left side of “/”: REAL-S. Right side: REAL-L.

VGG & umasked=0 VGG & umasked=GT Alex & umasked=0 Alex & umasked=GT
Remove-NeRF 0.503/0.123 0.588/0.170 0.584/0.121 0.665/0.187
SPIn-NeRF 0.425/0.138 0.513/0.212 0.497/0.143 0.574/0.215
Ours 0.409/0.115 0.488/0.163 0.443/0.119 0.507/0.181



Table 3. Detailed parameter setting. We report detailed parameters for each scene, including the inputted text prompt, CFG for multi-view
SDS (Lma

masked), and CFG for normal SDS (Lg
masked). This provides a comprehensive overview of the input configurations

Dataset Scene Text prompt CFG-ma CFG-g

Real-S

1 a stone park bench 7.5 7.5
2 a wooden tree trunk on dirt 7.5 2.5
3 a red fence 7.5 7.5
4 stone stairs 7.5 2.5
7 a grass ground 15 7.5
9 a corner of a brick wall and a carpeted floor 12.5 5
10 a wooden bench in front of a white fence 7.5 7.5
12 grass ground 15 7.5
book a brick wall with an iron pipe 12.5 5
Trash a brick wall 12.5 5

Real-L

001 a gray carpet floor 7.5 7.5
002 office desk, carpet floor 25 7.5
003 a sofa 7.5 7.5
004 black door, white wall, and carpet floor 7.5 7.5
005 an office desk 7.5 7.5
006 a stone floor 7.5 7.5
007 a stone bench 7.5 7.5
008 a stone wall 7.5 7.5
009 a wall corner 7.5 7.5
010 a wall corner and a wooden floor 12.5 7.5
011 a white door and a wooden floor 12.5 7.5
012 stone staircases 7.5 7.5
013 a wall corner 12.5 7.5
014 a brick wall corner 12.5 7.5
015 a brick wall 25 7.5
016 a group of metal poles sitting on an outdoor floor 25 7.5


	. Comparisons with SD inpainting prior
	. Depth SDS
	. Controlibility
	. Run time
	. Failure cases
	. More visual results
	. Evaluation settings and more quantitative results
	. Detailed parameter settings

