
Map-Relative Pose Regression for Visual Re-Localization

Supplementary Material

1. Supplementary Ablations

1.1. Impact of auxiliary losses

In Tab. 1 we present an analysis of the impact of incor-
porating auxiliary losses LP̂0

,LP̂1
into our model training

protocol, contrasted with the model devoid of such losses.
As mentioned in Section 3.3 of the main paper, we found
this implementation beneficial to the overall pose regression
performance.

Architecture Accuracy
10cm/5° 0.5m/5°

marepo w/ auxiliary losses (Ours) 47.2% 63.4%
marepo w/o auxiliary losses 45.7% 62.2%

Table 1. Performance of marepo trained with and without auxil-
iary losses as in Equation 7 of the main paper.

1.2. Impact of rotation representation: 9D SVD
orthogonalization vs. 6D. Gram-Schmidt

Additionally, we investigated the effects of utilizing alter-
native rotation representations on our model’s performance.
For example, Levinson et al. [8] demonstrated that SVD
orthogonalization facilitates a continuous mapping of a 9D
representation onto SO(3), potentially improving pose pre-
diction accuracy beyond that achievable with a 6D repre-
sentation [12] used in our model. We replaced our 6D with
the 9D representation and trained the full marepo models
to assess the differences. The findings indicate that, within
our model’s framework, the prediction accuracy for 9D ro-
tations marginally lags behind that of 6D rotations (Tab. 2),
thereby verify our design choice in the paper.

Accuracy marepo (9D) marepo (6D)

10cm/5° 46.8% 47.2%

Table 2. Ablation on rotation representations using the marepo
model. Accuracies are reported on Wayspots.

1.3. Impact of the SCR component

We use two methods to study the impact of the choice of
Scene Coordinate Regression component on the pose esti-
mation performance. First, we replaced the pretrained ACE
backbone with a VGG network, then retrained the scene-
specific SCRs. The SCRs’ outputs were then passed to our
pretrained pose regressor M. As indicated in Tab. 3, the

choice of SCR does indeed affect the pose regressor’s ac-
curacy. However, marepo also displays robustness to the
quality of the input scene coordinates, as the overall per-
formance degradation is not large, demonstrating the capa-
bility of our approach to predict accurate poses from scene
coordinates generated by different means.

Furthermore, we performed quantitative experiments
adding random noise to the scene coordinates passed to M.
Specifically, we applied randomly generated noise of differ-
ent magnitudes (up to 10cm, and up to 50cm) to a variable
proportion of the scene coordinates. We show that marepo
is able to cope with large proportions of errors in the input
coordinates, without significant drops in performance (up to
60% of the coordinates can be perturbed with 10cm noise,
and up to 40% for 50cm noise) (see Tab. 4).

Accuracy ACE backbone SCR + M VGG backbone SCR + M

10cm/5° 47.2% 46.0%

Table 3. Effect of different scene coordinate regression backbones
on the accuracy of the downstream regressor M on Wayspots.

SCR Noise 0% 20% 40% 60% 80% 100%

10cm 47.2% 46.9 46.0 44.5 38.2 26.9
50cm 47.2% 46.3 43.2 21.1 10.3 0.3

Table 4. Effect of increasing amounts of random noise applied
to the SCR predictions. The top row indicates the proportion of
the pixels in each scene coordinate map affected by uniform noise
with maximum value indicated at the beginning of each row. We
report the 10cm/5° accuracy on Wayspots.

2. Supplementary Video
To complement our quantitative analysis, we provide a sup-
plementary video offering a qualitative perspective, primar-
ily focusing on visually comparing the predicted camera tra-
jectories. The trajectories are superimposed on point clouds
rendered from the respective scenes, providing an intuitive
understanding of each method’s performance.

The first segment of the video showcases a comparative
analysis of our approach against other open-sourced APR-
based methods on the 7-Scenes dataset [5, 10], where we
compare vs. PoseNet[6, 7] and DFNet(EB0)[4]; and the
Wayspots dataset [1, 2], where we compare vs. PoseNet
and MS-Transformer[9], note that both train their models in
under one day. For PoseNet, we have utilized the PyTorch
implementation provided by Chen et al.[3].



Moreover, in the second segment of the video, we show
that marepo compares well qualitatively with the Acceler-
ated Coordinate Encoding[2] structure-based method. This
comparison demonstrates that our method achieves simi-
lar accuracy to ACE, with the added benefit of producing
smoother trajectory estimations in certain scenarios. No-
tably, our approach provides a faster throughput during in-
ference, underscoring its practical applicability in demand-
ing scenarios.

3. Experiments on 12-Scenes dataset
We show experimental results on the 12-Scenes dataset [11]
in Tab. 5. We compare marepo to the baseline APR methods
PoseNet and MS-Transformer. Since the original PoseNet
code was implemented on Caffe, we used the open-sourced
code from [3]. The results show that marepo significantly
outperforms the baseline APRs, which is consistent with the
behavior shown in the main paper compared to the bench-
mark APR approaches.

Scene PoseNet MST marepo

Apt.1 Kitchen 14.3% 3.4% 98.0%
Apt.1 Living 11.2% 9.7% 98.6%

Apt.2 Bed 18.1% 2.9% 96.0%
Apt.2 Kitchen 38.6% 13.8% 100%
Apt.2 Living 13.5% 4.6% 99.7%
Apt.2 Luke 9.1% 4.8% 89.4%

Office 1 Gates 362 34.5% 14.0% 97.2%
Office 1 Gates 381 8.1% 4.1% 84.6%
Office 1 Lounge 17.1% 14.1% 93.9%
Office 1 Manolis 13.7% 8.9% 94.8%

Office 2 Floor 5a 5.2% 1.4% 90.5%
Office 2 Floor 5b 5.2% 7.2% 83.5%

Average 13.5% 7.4% 93.9%

median error 9.4cm/3.9° 11.1cm/5.5° 2.6cm/1.3°

Table 5. Performance on the 12-Scenes [11] dataset. The accu-
racy is reported as percentage of query frames localized within
5cm/5°.
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