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1. Illustration of Data Partitions
We used Dirichlet distribution to generate non-IID data
partitions across the clients, following the strategy in [1].
Specifically, the proportion p(c) of samples with label c
among N clients is drawn as

p(c) = {p(c)n , n ∈ [N ]} ∼ DirN (α), (1)

where α is the concentration parameter characterizing the
level of data heterogeneity. A smaller α leads to higher level
of data heterogeneity, while a larger α induces lower level
of data heterogeneity. The number of samples with label c
assigned to client n is given by

N (c)
n =

p
(c)
n∑N

k=1 p
(c)
k

N (c), (2)

where N (c) denotes the number of samples with label c in
the overall training dataset. Figures 1 and 2 illustrate the
label distribution of clients by color-coding the number of
samples: the darker the color, the larger the number of sam-
ples with the corresponding label. To illustrate label distri-
butions corresponding to different levels of data heterogene-
ity, we give examples of three scenarios by setting α = 0.1,
0.5 and 5. As shown in Figures 1 and 2, when α = 0.1
the clients typically have only 2 or 3 classes present in their
datasets, while α = 5 leads to local datasets with almost all
classes.

2. Examples of Bit-Width Allocation
After completing bit-level pruning via sparsity-promoting
training, local models are compressed to average bit-widths
that may be lower than their budgets. The server then im-
plements the pruning-growing algorithm to restore the bit-
width of local models. As illustrated in Figures 3 and 4,
the clients allocated budgets of 2, 4 and 6 bits exhibit sim-
ilar patterns during the training process. All local models,
regardless of their budget, end up having the first and the

last layer assigned 8 bits (the maximum bit-width in the
considered setting). The layers selected to be compressed
into low precision are in the proximity of the region close
to the fully-connected layer (for instance, from “conv14”
to “conv18” in Fig. 3 and from “30” to “42” in Fig. 4).
Features of the input are extracted by the innermost layers
with high-precision filters and passed to the outermost lay-
ers with low-precision filters, so the quantization error does
not accumulate. The outermost layers have more parame-
ters which makes their compression cost-effective as more
bit-width space is made available for other layers. More-
over, the fully-connected layer has a relatively small num-
ber of parameters and plays a crucial role in the classifica-
tion, so it is always assigned the maximum precision.

3. Computing Binary Representations
Given any weight w in the float-point format, we use round
operation to obtain its binary representation as follows:
(1) layer-wise scaling factor:

s(l) ←− max
j,k
{w ∈W(l)}

(2) addition with zero point:

step←− 2b
(l)

− 1

z(l) ←− 2b
(l)−1

w ←− w +
s(l) · zl

step
(3) round operation:

w ←− round(w · step/s(l))

(4) compute binary representation:
let B denotes the binary weight; for i ∈ {0, . . . ,b(l) − 1},

ex←− 2b
(l)−i−1

Bi ←− floor(w/ex)
w ←− w − floor(w/ex) · ex

i←− i+ 1

1



(a) α = 0.1 (b) α = 0.5 (c) α = 5

Figure 1. Experiments on CIFAR10. Training data is split into 10 partitions according to a Dirichlet distribution. The concentration
parameter is set as follows: (a) α = 0.1; (b) α = 0.5; (c) α = 5.

(a) α = 0.1 (b) α = 0.5 (c) α = 5

Figure 2. Experiments on CIFAR100. Training data is split into 10 partitions according to a Dirichlet distribution. The concentration
parameter is set as follows: (a) α = 0.1; (b) α = 0.5; (c) α = 5.

4. Additional Experimental Results

To provide insight in the improvement achieved by our
methods, we study the test accuracy evaluated after a num-
ber of global rounds in the experiments in various settings.
For each dataset, we run two groups of experiments with
α = 0.5 and α = 1.0 where FedMPQ achieves perfor-
mance similar to the FPQ8 baseline. As illustrated in Fig-
ures 5 and 6, FedMPQ converges to the final test accuracy
much slower than FPQ8. As we demonstrated in the pa-
per, the bit-width allocation of the local models in FedMPQ
changes at each round and so does the search space of the
optimization; meanwhile, FPQ8 has a larger, fixed search
space so its training converges faster. Although the size of
the search space is fixed due to the limited bit-width budget,
FedMPQ enables local models to converge to the parame-
ters that provide better performance.

The difference in convergence speed between FPQ8 and
FedMPQ is smaller on CIFAR10 than CIFAR100. This
happens because CIFAR10 data is simpler than CIFAR100
(fewer classes) so the networks can learn representations of

the entire dataset even with a low capacity. On the other
hand, Tiny-ImageNet is more complex than CIFAR100 so
FedMPQ converges slower than FPQ8 and has performance
that lags behind FPQ8 after 50 global training rounds.
AQFL has fixed and small search space because of the con-
strained bit-width budgets so it converges fast but cannot
achieve high accuracy, as illustrated in Figures 5, 6 and 7.



Figure 3. Bit-width allocation of local models (resnet20) assigned to three clients with various bit-width budget after 50 global rounds.
The value of y axis denotes the bit-width assigned to a layer while the x axis indicates the layer’s ID as well as the number of parameters
in this layer.

Figure 4. Bit-width allocation of local models (resnet44) assigned to three clients with various bit-width budget after 50 global rounds.
The value of y axis denotes the bit-width assigned to a layer while the x axis indicates the layer’s ID as well as the number of parameters
in this layer. For clarity, we omit “conv” in the label of x axis.



(a) α = 0.5 (b) α = 1

Figure 5. Test accuracy vs. the number of global rounds. The number of clients is 10. The bit-width budget is as same as in the experiments
in the main paper: {2,2,4,4,4,6,6,6,8,8}.

(a) α = 0.5 (b) α = 1

Figure 6. Test accuracy vs. the number of global rounds. The number of clients is 10. The bit-width budget is as same as in the experiments
in the main paper: {2,2,4,4,4,6,6,6,8,8}.

(a) α = 0.5 (b) α = 1

Figure 7. Test accuracy vs. the number of global rounds. The number of clients is 10. The bit-width budget is as same as in the experiments
in the main paper: {2,2,4,4,4,6,6,6,8,8}.
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