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Supplementary Material

1. Implementation Details of MoCha-MVS

MoCha-MVS was trained and tested using a configura-
tion similar to that of most MVS methods [3, 10, 13] on
the DTU dataset[4]. Similar to other learning-based MVS
[3, 10, 13], the output depth map is filtered based on photo-
metric and geometric consistencies. To save computational
costs, MoCha-MVS utilizes only 3 iterations, and is trained
on the DTU training set [4] for 2 days with a batch size of 4
on single NVIDIA Tesla A6000 GPU.

2. More Details on the Structure of MoCha-
MVS & MoCha-Stereo

2.1. Loss Function of MoCha-MVS

During the training phase, our approach produces multi-
ple depth maps from both the initial depth prediction mod-
ule and the multi-stage LSTM-based optimization mod-
ule, each corresponding to different iteration steps. Sub-
sequently, we compute L1 losses between all output depth
maps and their respective ground truth depth maps of
matching resolution. The final loss is then computed as a
weighted sum of all these losses as Equ. 1.
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where L0 represents the loss associated with the initial
depth map generated by the MVS-version MCCV. Tk de-
notes the number of optimization iterations at stage k.
{Lk

i |i = 1 . . . Tk + 1} refers to the losses of Tk output
depth maps and an upsampled depth map at stage k, and
λk
i represents the corresponding weight.

2.2. Feature Extractor

MoCha-Stereo. Following [12] and MoCha-MVS, we also
utilizes a frozen network as feature encoder. Feature Ex-
tractor of MoCha-Stereo extract the multi-scale features
fencoder
2i ∈ Ri=2,3,4,5 at 1/4, 1/8, 1/16, and 1/32 scales

of the original shape first. It is worth noting that stereo
matching is a task that relies on matching based on epipolar
constraints, requiring the network to have strong local dis-
criminative abilities. Despite the pre-trained model exhibits
strong semantic understanding capabilities, the external fea-
tures [2] provides exhibit limitations in capturing local in-
formation relevant to the stereo matching task. To bolster
the local discriminative capability of the feature extractor,

Figure 1. Visualization results of MoCha-MVS on a few DTU
scenes [4].

we also use the learnable decoder as shown in Equ. 2.

fdecoder
2i = Conv(Concat(fencoder

2i+1 , Deconv(fdecoder
2i )))

(2)
where Deconv denotes the deconvolution operation, it de-
convolution fdecoder

2i to match the resolution of fencoder
2i+1 .

This module implements a coarse-to-fine strategy by con-
catenating the features garnered from the deconvolution of
the feature map at a lower resolution with the feature map
at the same resolution, thus generating a new feature map
at the current resolution level. This enhancement equips the
feature extractor with the ability to learn internal features
based on prior knowledge from external features, thereby
incorporating multi-scale information to attain a more ac-
curate semantic context.
MoCha-MVS. MoCha-Stereo is expanded to include MVS,
or MoCha-MVS. The overall design of MoCha-MVS draws
inspiration from CasMVSNet [3], IterMVS [10], and Ef-
fiMVS [11]. Following MoCha-Stereo, MoCha-MVS also
use a frozen encoder to extract multi-scale features. We
utilizes EfficientNet [8] pretrained on ImageNet [1] as fea-
ture encoder, and extract the multi-scale features fencoder

2i ∈
Ri=2,3 at 1/4, 1/8, and 1/16 scales of the original shape.
However, the decoder of MoCha-MVS consists of only
a single-layer convolution applied to features at different
scales, which is different from MoCha-Stereo.

2.3. Sliding Window for Motif Channel Mining

The Sliding Window SW is a critical component in the ac-
quisition of the Motif Channel. Through the interaction be-
tween the Sliding Window SW and the high frequency fea-
ture ffre, we obtain repeated channel features fmc

fre. We
have found that the most appropriate implementation of the
sliding window is a 3 × 3 convolution. This approach is



actually consistent with our Equ. 3 in the main text.

fmc
fre(s, h, w) =

Nc∑
c=1

3∑
i=1

3∑
j=1

(SW (s, h+ i, w + j)× ffre(c, h, w)) (3)

Because convolution in the spatial domain is equivalent to
multiplication in the frequency domain, i.e., Equ. 4 holds
true.

Conv3×3(h,w) ≜ (4)
3∑

i=1

3∑
j=1

(SW (h+ i, w + j)× ffre(h,w))

The Equ. 4 can be proven as follows:
Let x and y be spatial domain sequences, where both x and
y are column vectors. Let X and Y be frequency domain
sequences, i.e., the column vector features obtained by ap-
plying the Fourier transform F to x and y. Equ. 5 and Equ.
6 hold true here.

X = Fx (5)

x = F−1X (6)

where the F can be represented by Equ. 7.
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To prove Equ. 4, it suffices to prove Equ. 8.

F · Toep(x) · y = Diag(X) · F · y (8)

F · Toep(x) · F−1 = Diag(X) (9)

where Diag(X) denote the diagonal matrix with the ele-
ments of vector X as its diagonal elements, and Toep(x)
represent the Toeplitz matrix formed by arranging the ele-
ments of vector x. At this point, all y’s make Equ. 8 hold.
So to prove that Equ. 4 holds, all you need to do is prove
that Equ. 9 holds.

The characteristics of each column of F−1 are such that
each element is equal to the previous element multiplied
by e

k·i2π
N (where k denotes the column index, starting from

0). The first element 1 is also equal to the last element
e

k(N−1)·i2π
N multiplied by e

k·i2π
N (with the exponential func-

tion having a period of i2π). Due to the shifting relationship
between rows in Toep(x), when the j + 1 row of Toep(x)
is multiplied by the k column of F−1, it is equal to the j
row of Toep(x) multiplied by the k column of F−1 and
then multiplied by e

k·i2π
N . This proves that each column of

F−1 is a characteristic vector of Toep(x). Since the first el-
ement of each column of F−1 is 1, the characteristic value
corresponding to the k column is the first row of Toep(x)
multiplied by the k column of F−1, resulting in Equ. 10.

λ = x0 + xn−1e
k·i2π

N + · · ·+ xn−1e
−k·(N−1)·i2π

N (10)

λ = x0 + x1e
−k·i2π

N + · · ·+ xn−1e
−k·(N−1)·i2π
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Due to the periodicity of the exponential function, Equ. 11
is satisfied. This means that X is equal to the k-th element
of Fx. Therefore, the characteristic vectors of Toep(x) are
the columns of F−1, and the characteristic values are the
elements of X . Based on this conclusion, it can be inferred
that Equ. 9 holds, which implies that Equ. 4 holds.

2.4. Iterative Update Operator

Following [5, 12, 14], we employ a Iterative Update Op-
erator to update the initial disparity map obtained from the
Motif Channel Correlation Volume (MCCV) in a coarse-to-
fine manner. This kind of incremental learning is beneficial
in mitigating catastrophic forgetting during the training pro-
cess. We reproduced the iterative structures of ConvLSTM
to ensure stable updates of features.

For each iteration, MoCha-Stereo or MoCha-MVS uses
the current disparity dt to index from the MCCV via lin-
ear interpolation. Then we use ConvLSTM to update the
hidden state ht−1 and Ct−1 as Equ. 12.

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C ′
t = tanh(Wi · [ht−1, xt] + bc) (12)
Ct = ft × Ct−1 + it × C ′

t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot × tanh(Ct)

where Wf ,Wi represent the weights adaptively learned by
the convolutional neural network.

2.5. Acquiring inputs for Unet of Reconstruction
Error Motif Penalty Module

The final disparity map output from Iterative Update Op-
erator is produced by upsampling [9] the disparity map at
1/4 resolution, which results in some loss of spatial infor-
mation. The loss of spatial structure can be compensated for
through the reconstruction error. The reconstruction error is
a crucial metric in various domains, capturing the disparity
between true values and model predictions. Therefore, we
incorporate the additional reconstruction error as input to
the Refinement module to refine the full-resolution disparity
map. The formula for the calculation of the reconstruction
error in MoCha-Stereo is denoted as Equ. 7 in the original



Figure 2. REMP module for Full-Resolution Refine. The upper branch above obtains low-frequency information through pooling, the
lower branch retains the original high-resolution image as high-frequency detailed information, and the middle branch learns motif features
through CNN.

manuscript, and here we represent it as Equ. 13.

E = Kl(R− TNT

D
)K−1

r Ir − Il (13)

We utilizes the homography transformation described in
Equ. 14 to warp the right view into the coordinate system
of the left view.

Iwarp
r = Kl(R− TNT

D
)K−1

r Ir (14)

Kl(r) represents the intrinsic matrix of the left (right) cam-
era in the stereo system, R is the rotation matrix from the
right view coordinate system to the left view coordinate sys-
tem, T is the translation matrix from the right view coordi-
nate system to the left view coordinate system, N is the nor-
mal vector of the object plane in the right view coordinate
system, D is the perpendicular distance between the object
plane and the camera light source (this distance is obtained
from the computed disparity).

EM = Iwarp
r − Il (15)

input = REMP (Concat(Conv(IM), dn)) (16)

EM is the error map, dn represents the initial disparity map
before undergoing the homography processing, Ir is the
right view image, and REMP means our Reconstruction
Error Motif Penalty (REMP) module, as shown in Fig. 2.
For MoCha-MVS, the reconstruction error can be expressed
using Formula 17.

Emvs =

v∑
i=1

(Kref (R− TNT

D
)K−1

i Ii − Iref ) (17)

where v means numbers of source images, Iref means ref-
erence image.



3. Visualizations for MoCha-Stereo
3.1. Visualizations before and after optimizing channel features using Motif Channel Attention (MCA) for

feature maps of stereo matching

One set of relationships affected by MCA is illustrated in Fig. 3, as already presented in the original manuscript. Additional
correspondences are depicted in the following figures.

Figure 3. An example of one of the feature channels in visual form. The first picture shows the initial normal channel, and the last picture
shows the visualization after paying attention to Motif Channels. The middle picture visualize a motif channel. It can be observed that the
edge texture details are emphasized in the new feature channels.

3.2. Visualizations of Zero-shot performance

Figure 4. Comparisons on the Middlebury dataset [7]. All results presented in this section demonstrate zero-shot generalization on the
Scene Flow dataset [6]. The odd-numbered columns show the original images, while the even-numbered columns present zoomed-in
details for better visualization.
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