
Neural Clustering based Visual Representation Learning

Supplementary Material

For a better understanding of the main paper, we provide
additional details in this supplementary material, which is
organized as follows:
• §A provides the pseudo code of FEC.
• §B introduces more experimental details.
• §C offers more results and discussions about the modeled

representatives.
• §D discusses our limitations, societal impact, and direc-

tions of future work.

A. Pseudo Code

To facilitate a comprehensive understanding of FEC, we
provide pseudo code for our feature encoding and feature
pooling in Algorithm S1.

B. More Experimental Detail

Image Classification. In this task, several widely-used data
augmentations are adopted to better train the model, in-
cluding random horizontal flipping, random pixel erase [1],
MixUp [2], CutMix [3], and label smoothing [4]. We em-
ploy an AdamW [5] optimizer using a cosine decay learning
rate scheduler and 5 epochs of warm-up. The momentum
and weight decay are set to 0.9 and 0.05, respectively. A
batch size of 1024 and an initial learning rate of 0.001 are
used. We also use exponential moving average [6] to en-
hance the training. Throughput (image/s), or FPS, is mea-
sured using the same script [7, 8] on a single V100 GPU
using a batch size of 256. The reported values are averaged
by 100 iterations after 20 warm iterations. We use the same
codebase and tricks (e.g., multi-head computing) as in [9].
In addition, we use almost the same hyperparameters and
architectures as in [9] for fair comparison.
Downstream Tasks. During training, backbones are initial-
ized with weights pre-trained on ImageNet [10], while the
other parts are initialized randomly.

C. Modeled Representative

In the “Study of Ad-hoc Interpretability” section of the main
paper, it is highlighted that FEC’s final cluster assignments
display consistent semantic representations. These repre-
sentations frequently correlate with distinct objects or their
components and demonstrate a close alignment with human
perception. Here we visualize more results of cluster as-
signments in Fig. S1 to clarify the FEC’s principles. Simi-
lar conclusions can be drawn from Fig. S1, which confirms
again the ad-hoc interpretability and effectiveness of FEC.

Figure S1. Inspection of the modeled representatives (§C) on
ImageNet-1K [10] val.

D. Discussion

Limitation Analysis. One limitation of our approach is the
adoption of a straightforward clustering mechanism, pri-
marily aimed at ensuring computational efficiency. While
this design choice contributes to faster processing times, it
may inadvertently lead to sub-optimal performance in cer-
tain scenarios. Additionally, akin to many parametric clus-
tering algorithms [11–13], our method requires the manual
definition of the number of clusters to keep the same resolu-
tion with previous works [7, 14–16]. This aspect introduces
a degree of subjectivity and potential bias, as the predeter-
mined cluster count may not align perfectly with the intrin-
sic structure of specific images, particularly in dealing with
datasets where the optimal number of clusters is not known
a priori or varies significantly.
Societal Impact. This work provides a clustering perspec-
tive for transparent, ad-hoc interpretable feature extraction,



Algorithm S1 Pseudo code of FEC in a PyTorch-like style.

# feat_i: input feature (N x C), where N = W x H

# C: number of channels
# N: resolution of input feature
# O: number of cluster centers. In pooling, O = N/4. In encoding, O is a hyperparameter (O < N).
# M: similarity matrix (Eq.5)
# A: cluster assigment matrix
# R: representatives
# sig: sigmoid function
# alpha and beta: learnable parameters

def model_representatives(feat_i)
# center initialization (Eq.4)
feat_k = conv_k(feat_i) # (N x C’)
feat_v = conv_v(feat_i) # (N x C’)
feat_c_k = ada_pool(feat_k) # (O x C’)
feat_c_v = ada_pool(feat_v) # (O x C’)

# compute similarities and cluster assigments (Eq.5)
M = cosine_sim(feat_k, feat_c_k) # (N x O)
A = torch.argmax(M, dim=1) # (N x O)

# aggragate the feature of representatives (Eq.6)
R = aggragate_feature(feat_v, feat_c_v, A) # (O x C’)

return R, M

def pooling(feat_i)
R, _ = model_representatives(feat_i)
res_conn = ResConn(feat_i) # residual connection (Eq.9)

return R + res_conn

def encoding(feat_i)
R, M = model_representatives(feat_i)

# feature dispatching (Eq.7)
refined_M = sig(alpha * M + beta).permute(1,0) # (O x N)
feat_d = ( R.unsqueeze(dim=1) * refined_M.unsqueeze(dim=-1) ).sum(dim=0) # (N x C’)
feat_d = MLP(feat_d) # (N x C)
out = feat_i + feat_d # residual connection

return out

and accordingly introduces a novel visual backbone which
reformulates the entire process of feature extraction as rep-
resentative selection. On positive side, the approach ad-
vances network interpretability and is valuable in safety-
sensitive applications, e.g., medical image analysis [17],
face recognition [18, 19], and autonomous driving [20, 21].
For potential negative social impact, the erroneous recogni-
tion may cause inaccurate decision or planning of systems
based on the results. In addition, the potential bias inher-
ent in the training data may be exploited for malicious pur-
poses.
Future Work. This work also comes with new challenges,
certainly worth further exploration:
• Incorporating Advanced Clustering Algorithms. In

future developments, we aim to augment the FEC frame-
work by incorporating advanced clustering algorithms.
Our current model prioritizes computational efficiency
with a straightforward clustering mechanism, but we rec-
ognize opportunities for enhancing performance and ac-
curacy. Upcoming versions will investigate sophisti-
cated algorithms adept at managing complex data struc-

tures and distributions, potentially increasing the granu-
larity and precision of feature extraction for more refined
and accurate visual representations. An intriguing av-
enue is transitioning from parametric clustering, which
presupposes a fixed number of clusters, to nonparamet-
ric clustering, where the number of clusters is undeter-
mined. There are numerous techniques for nonparamet-
ric clustering, including Bayesian nonparametric (BNP)
mixture models (exemplified by the Dirichlet Process
Mixture (DPM) model [22, 23]), DPM sampler [24–27],
variational DPM inference [28–32], density-based ap-
proach [33], nearest-neighbor graph [34], supervised ap-
proach [35, 36], dynamic network architecture [37]. We
have explored a very recent work, i.e., DeepDPM [37].
However, after running their code, we find that DeepDPM
is notably complex and require substantial computational
time. Moving forward, our focus is on identifying better
trade-offs between complexity, computational efficiency,
and performance.

• Combination with Set-prediction Architectures. The
recent emergence of set-prediction architectures, such



as DETR [38], presents a significant opportunity to uti-
lize the representatives modeled by FEC more effec-
tively. Unlike traditional methods that rely on hand-
crafted components like non-maximum suppression for
post-processing and pre-defined anchors for label assign-
ments, these approaches simplify the pipeline by allowing
for end-to-end training and inference. This reduces the
need for many of the specialized components typically
used in object detection systems and provides an ideal
framework for utilizing the representatives extracted by
FEC. For example, the modeled representatives can be ap-
plied as a metric for distance measurement, aiding in the
stabilization of bipartite matching. This integration effec-
tively infuses the concept of “instances” (or representa-
tives) into the feature extraction process, which stands as
the primary motivation behind this work.
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