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6. Overview of Supplementary Material
In the supplementary material, we provide additional
details in the following sections:

• Section 7: Further Analysis and Experiments

• Section 8: Details of Optimal Descriptor Solver

• Section 9: Dataset and Implementation Details

• Section 10: Demonstration of Prompts and Descriptors

• Section 11: Broader Impact and Limitation

7. Further Analysis and Experiments
7.1. Visualizations of Adaptive Transport Plan

We analyze the adaptive transport plan in our proposed OD
Solver. Qualitative visualizations of the transport plan are
illustrated in Fig. 6 and Fig. 7, with detailed explanations
provided in the captions. We find that our proposed OD
Solver can adaptly assign each descriptor to the video in-
stance.

7.2. Visualizations of Attention Maps

We provide additional visualizations of the attention maps
of our proposed OST in Fig. 8.

7.3. The Robustness of OST

We present case studies to illustrate the robustness of our
proposed OST, specifically focusing on the transport plan
depicted in Fig. 11 for scenarios where certain action steps
are missing, and the attention maps in Fig. 12 where our
OST effectively resolves category mismatches. Detailed
analysis is provided within the captions of these figures.

7.4. Variant of Global Similarity

Besides the global similarity score computation illustrated
in Eq. 9 in the main paper, an alternative global similar-
ity score can be computed by initially determining the sim-
ilarity between video representations and descriptor-level
embeddings separately, and subsequently averaging these
scores to derive the overall global video-descriptor similar-
ity score. Although this approach may appear mathemat-
ically analogous to Eq. 9, the modified gradient flow dur-
ing the training process could yield divergent outcomes. As

demonstrated in Table 6, this implementation still exhibits
sub-optimal performance in comparison to OST, thereby
underscoring the superiority of our proposed method.

Table 6. Study on variants of global similarity score

Method HMDB-51 UCF-101 K600

Variant 1 53.3 76.6 69.3
Variant 2 52.0 76.4 69.3

OST 54.5 77.9 72.3

8. Details of Optimal Descriptor Solver
8.1. Theoretical Analysis

In this section, we will provide the theoretical analysis of
the existence and unicity of the optimal transport plan P ∗

in our proposed OD Solver.
As discussed in Eq. 2 in the main paper, after obtaining a

set of frame-level features V ∈ RT×d and descriptor-level
embedding for each class Ds

k ∈ RNs×d, Dt
k ∈ RNt×d.

The cost matrix for each class can be defined as:

Cs
k = 1− cos(V ,Ds

k), Ct
k = 1− cos(V ,Dt

k). (16)

We can define the OT problem in Kantorovich formulation
as:

P ∗ = argmin
P∈RT×N

T∑
i=1

N∑
j=1

P ijCij

s.t. Pe = µ, P⊤e = ν.

(17)

However, solving the problem in Eq. 17 costs O(n3logn)-
complexity, which is time-consuming. By adopting
Sinkhorn [15] algorithm, we can define the entropy-
regularized OT problem as:

P ∗ = argmin
P∈RT×N

T∑
i=1

N∑
j=1

P ijCij − λH(P )

s.t. Pe = µ, P⊤e = ν.

(18)

Adding an entropy regularization to the original OT
problem makes the optimal regularized transport plan more
straightforward. This allows us to calculate the optimal
transport distance via Matrix Scaling Algorithms [49].
Lemma 1. For λ > 0, the optimal transport plan P ∗

is unique and has the form P ∗ = diag(a)Kdiag(b),
where a and b are two probability vectors of Rd uniquely



defined up to a multiplicative factor and K = exp(−C/λ).

Proof. The existence and unicity of P ∗ follows from the
boundedness of µ,ν and the strict convexity of minus the
entropy. Consider L(P, α, β) as the Lagrangian of Eq. 18,
where α, β serve as the dual variables corresponding to the
equality constraints in µ,ν:

L(P , α, β) =
∑
ij

(
1

λ
pij log pij + pijmij

)
+ α⊤(Pe− µ) + β⊤(P⊤e− ν).

(19)

For any couple (i, j), if (∂L/∂pij = 0), then it follows that
pij = e−1/2−λαi e−λmije−1/2−λβj . Given that all entries
in matrix K are strictly positive, we know from Sinkhorn’s
work [49] that there is a one-of-a-kind matrix in the form of
diag(a)Kdiag(b) which fits the constraints given by µ,ν.
Therefore, this matrix is necessarily P ∗, and we can calcu-
late it using the Sinkhorn fixed point iteration:

a← µ/Kb, b← ν/K⊤a. (20)

8.2. Pseudo-Code on OD Solver

As explained in the paper, our OD Solver is effective and
simple to implement. In Algorithm 1, we show the PyTorch
style pseudo-code on the implementation of our proposed
Optimal Descriptor Solver.

9. Implementation Details

9.1. Dataset Details

We provide 6 video benchmarks used in our empirical stud-
ies:
Kinetic-400 [7] is a large-scale video dataset consisting of
10-second video clips collected from YouTube. 240,000
training videos and 20,000 validation videos in 400 differ-
ent action categories.
Kinetic-600 [8] is an extension of Kinetics-400, consist-
ing of approximarely 480,000 videos from 600 action cat-
egories. The videos are divided into 390,000 for training,
30,000 for validation, and 60,000 for testing. We mainly
use its validation set for zero-shot evaluation.
UCF-101 [50] is a video recognition dataset for realistic
actions, collected from YouTube, including 13,320 video
clips with 101 action categories in total. There are three
splits of the training and testing data.
HMDB-51 [31] is a relatively small video dataset compared
to Kinetics and UCF-101. It has around 7,000 videos with
51 classes. HMDB-51 has three splits of the training and
testing data.

Something-Something V2 [20] is a challenging temporal-
heavy dataset which contains 220,000 video clips across
174 fine-grained classes.
ActivityNet [6] We use the ActivityNet-v1.3 in our experi-
ments. ActivityNet is a large-scale untrimmed video bench-
mark, containing 19,994 untrimmed videos of 5 to 10 min-
utes from 200 activity categories.

9.2. Implementation Details

Zero-shot Experiments. We mainly follow the zero-shot
setting in [41, 47]. We tune both the visual and textual en-
coder of a CLIP ViT-B/16 with 32 frames on Kinetics-400
for 10 epochs. The batch size is set as 256 and single-view
inference is adopted during validation. We set the hyperpa-
rameters in the Sinkhorn algorithm [15] as λ = 0.1. We
adopt the AdamW optimizer paired with a 8 × 10−6 initial
learning rate with the CosineAnnealing learning rate sched-
ule. Following [24, 34, 59], we perform a linear weight-
space ensembling between the original CLIP model and the
finetuned model with a ratio of 0.2.

We apply the following evaluation protocols in our zero-
shot experiments: For UCF-101 and HMDB-51, the predic-
tion is conducted on three official splits of the test data. We
report average Top-1 accuracy and standard deviation. For
Kinetics-600, following [11], the 220 new categories out-
side Kinetics-400 are used for evaluation. We use the three
splits provided by [11] and sample 160 categories for evalu-
ation from the 220 categories in Kinetics-600 for each split.
We report average Top-1 and Top-5 accuracy and standard
deviation.
Few-shot Experiments. For the few-shot setting, we utilize
CLIP ViT-B/16 as We adopt the few-shot split from [41, 47]
that randomly samples 2, 4, 8, and 16 videos from each
class on UCF-101, HMDB-51, and Something-Something
V2 for constructing the training set. For evaluation, we
use the first split of the test set on UCF-101, HMDB-51,
and Something-Something V2. We utilize 32 frames during
training and validation. Top-1 accuracy with single-view
inference is reported. We set the batch size as 64 and train
for 50 epochs in few-shot experiments.
Fully-supervised Experiments. For fully-supervised stud-
ies, we base our approach on Text4Vis [60] to conduct ex-
periments in frozen text settings and keep the hyperparam-
eters and data augmentations consistent with the baseline.
We vary CLIP ViT-B/32, and ViT-B/16 as encoder and train
with 8, and 16 frames, respectively. We report Top-1 accu-
racy using single-view inference.
Data Augmentation Recipe. For a fair comparison, we
largely follow the data augmentations in ViFi-CLIP [47] for
zero-shot and few-shot experiments and follow the recipe in
Text4Vis [60] for fully-supervised experiments. The details
for our data augmentation recipe are shown in Table 7.
Training and Testing. We employ the identical alignment



Algorithm 1 PyTorch style pseudo-code on Optimal Descriptor Solver

1 def OptimalDescriptorSolver(video_emb, descriptor_emb):
2 A, N, D = descriptor_emb.shape # Get the shape of descriptor embeddings
3 B, T, D = video_emb.shape # Get the shape of video embeddings
4 sim = torch.einsum(’b t d, a n d->t n b a’, video_emb, descriptor_emb) # Compute the similarity
5 sim = rearrange(sim, ’t n b a->(b a)t n’) # Rearrange dimensions
6 cost_mat = 1 - sim # Calculate the cost matrix
7 pp_x = torch.zeros(B*A, T).fill_(1. / T) # Initialize the horizontal probability vector
8 pp_y = torch.zeros(B*A, N).fill_(1. / N) # Initialize the vertical probability vector
9 with torch.no_grad():

10 KK = torch.exp( - cost_mat / eps) # Calculate the cost matrix with exponentiation
11 P = Sinkhorn(KK, pp_x, pp_y) # Apply Sinkhorn algorithm to obtain the optimal transport plan P
12

13 # Using optimal transport plan P to obtain logits
14 score_ot = torch.sum(P * sim, dim=(1, 2)) # Frobenius inner product
15 logits = score_ot.view(B, A) # Classification logits
16 return logits
17

18 def Sinkhorn(K, u, v):
19 r = torch.ones_like(u) # Initialize r as a tensor of ones with the same shape as u
20 c = torch.ones_like(v) # Initialize c as a tensor of ones with the same shape as v
21 thresh = 1e-2 # Threshold to determine convergence in Sinkhorn iterations
22 max_iter = 100 # Maximum number of Sinkhorn iterations
23 # Sinkhorn iteration
24 for i in range(max_iter): # Iterate up to the maximum number of iterations
25 r0 = r # Save the previous iteration’s r
26 r = u / torch.matmul(K, c.unsqueeze(-1)).squeeze(-1) # Update r
27 c = v / torch.matmul(K.permute(0, 2, 1), r.unsqueeze(-1)).squeeze(-1) # Update c
28 err = (r - r0).abs().mean() # Calculate the mean absolute change in iterations
29 if err.item() < thresh: # If the change is below the threshold, stop iterating
30 break
31 P = torch.matmul(r.unsqueeze(-1), c.unsqueeze(-2)) * K # Obtain the final transport plan P
32 return P
33

Table 7. Data augmentation recipe for video recognition.

Setting Zero/Few-shot Fully-supervised
Augmentation
RandomFlip 0.5 0.5
Crop MultiScaleCrop RandomSizedCrop
ColorJitter 0.8 0
GrayScale 0.2 0.2
Label smoothing 0 0
Mixup 0 0
Cutmix 0 0

mechanism throughout both the training and testing phases.
The only difference lies in the application of contrastive-
style operations during training, where logits are obtained
exclusively from descriptors within the current mini-batch.
During testing, classification scores are calculated against
descriptors from all classes.

10. Demonstration of Prompts and Descriptors

10.1. Prompting the Language Model

We provide our prompts for generating Spatio-Temporal
Descriptors in Fig. 9 and Fig. 10, respectively. We provide

details in the figure captions.

10.2. Additional Examples of Spatio-Temporal De-
scriptors

In this section, we provide additional examples of the
Spatio-Temporal Descriptors.
Descriptors for action category “Adjusting Glasses”:
Spatio Descriptor:
1. person wearing glasses
2. hand adjusting glasses
3. glasses sliding on face
4. fingers pushing up glasses

Temporal Descriptor:
1. Push the glasses up the bridge of your nose
2. Align the temples with your ears
3. Adjust the nose pads for comfort
4. Ensure that the glasses rest comfortably on your

face

Descriptors for action category “Assembling Bicycle”:
Spatio Descriptor:
1. Bicycle frame
2. Handlebars
3. Wheels
4. Pedals

Temporal Descriptor:
1. Attach the front wheel to the bicycle frame using a

wrench and follow the specified torque setting.



2. Secure the handlebars onto the front fork by
tightening the stem bolts with an Allen wrench.

3. Install the pedals onto the crank arms by screwing
them in clockwise.

4. Adjust the seat height to the desired position and
tighten the seat clamp to secure it.

Descriptors for action category “Building Sandcastle”:
Spatio Descriptor:
1. beach
2. sand
3. castle
4. bucket

Temporal Descriptor:
1. Dig a shallow hole in the sand for the base
2. Fill the hole with wet sand and pack it down firmly
3. Create a large mound of sand on top of the base
4. Use your hands or tools to shape the sand into walls

and towers

Descriptors for action category “Opening Wine Bottle”:
Spatio Descriptor:
1. wine bottle
2. corkscrew
3. uncorking
4. pouring

Temporal Descriptor:
1. Hold the wine bottle firmly
2. Remove the foil or plastic covering from the top of

the bottle
3. Insert the corkscrew into the center of the cork
4. Twist the corkscrew counterclockwise to remove the

cork

Descriptors for action category “Planing Wood”:
Spatio Descriptor:
1. wood
2. sawdust
3. saw
4. workbench

Temporal Descriptor:
1. Measure and mark the dimensions of the wood piece
2. Cut the wood according to the marked measurements
3. Smooth the edges of the cut wood using sandpaper
4. Apply a coat of varnish or paint to protect and

enhance the appearance of the wood

11. Broader Impact and Limitation
OST represents an effective way to utilize external knowl-
edge to adapt pre-trained visual-language models for gen-
eral video recognition. Our approach can benefit zero-shot,
few-shot, and fully-supervised video recognition with no
modification to the model architecture and minor additional
computational costs. Furthermore, the proposed Spatio-
Temporal Descriptor can greatly reduce the semantic sim-
ilarity of action categories. The employment of LLMs to
generate corresponding descriptors can be readily ex-
tended to various unseen action categories, allowing the
open-vocabulary understanding of actions in the wild.

However, the quality of descriptors directly connects to
the final performance. The process of generating descrip-
tors highly depends on the knowledge learned by the LLM,
which is only partially controllable by varying the prompts.
Additionally, our findings suggest that the informational
needs for describing actions differ across various categories.
Relying solely on four Spatio-Temporal Descriptors might
not be ideal for every category. An adaptive approach,

where the number of descriptors is tailored to each category,
would likely be more effective.
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(a) Adaptive transport plan of action category “geocaching”
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(b) Adaptive transport plan of action category “using a sledge hammer”

Figure 6. Visualization of the adaptive transport plan. Our OD Solver not only integrates various visual cues—such as GPS devices,
navigation trails in Fig. 6a, and hammer-swinging motions in Fig. 6b, but also greatly reduce the detrimental effects of the noisy descriptors
that often arise from the hallucination issues associated with LLMs, such as misleading ‘hidden treasures’ in Fig. 6a or ‘repeat the swinging’
in Fig. 6b). It is important to note that while the absolute variances among transport plans are relatively small, their substantial relative
differences are critical in optimal matching.
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(a) Adaptive transport plan of action category “cutting apple”
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(b) Adaptive transport plan of action category “waving hand”

Figure 7. Visualization of the adaptive transport plan. Our investigation reveals that our OD Solver can synchronize different action steps
described by Temporal Descriptor with corresponding video sequences. For example, it accurately coordinates actions such as ‘holding an
apple firmly in one hand’ in Fig. 7a, ‘extend the arm in front of the body’, and ‘moving the hand from side to side’ in Fig. 7b with the help
of corresponding Temporal Descriptors.
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Figure 8. Additional visualizations of attention maps. The attention maps corresponding to the Spatio Descriptors and Temporal Descrip-
tors are depicted on the left and right sides, respectively. The visualizations reveal that our proposed OST consistently focuses on specific
static objects and temporal salient parts. This consistent focus underscores the efficacy of our approach.



openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[
         {   
             "role": "system",
             "content": 
                 "You are an intelligent chatbot designed for providing meaningful class-label augmentations for 
                 classification tasks. "       
                 "Your task is to give corresponding meaningful and distinguishable text  descriptions. Here's     
                 how you can accomplish the task:"
                 "------"
                 "##INSTRUCTIONS: "
                 "- Focus on the static visual cues that may benefit visual-side classification.\n"
                 "- Give the key descriptors that can be found within a single image.\n"
                 "- Try to focus on object-level cues, such as obvious objects or scenes that may include in the 
                  image.\n"     
                 "- Do not include descriptor that only contains 'person'"   
         },
         {
             "role": "user",
             "content": 
                 f"Please give me a long list of descriptors for action: {category}"
                 f"Provide your answer only as the description it self, {num_captions} descriptors in total."
                 "Please generate the response in the form of a Python list string that consists of the   
                 descriptors you provide."
                 "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python 
                 list string. "
                 "For example, your response should look like this: [\"descriptor1\", \"descriptor2\" ... ]."
         }  
    ]
)

Figure 9. Prompt for generating Spatio Descriptors. The generated Spatio Descriptors are intended to capture static visual elements that
can be discerned from a single image, such as environments and objects. So we prompt the LLM to prioritize and interpret object-level
cues.

openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[
         {   
             "role": "system",
             "content": 
                 "You are an intelligent chatbot designed for providing meaningful class-label augmentations for                  
                 classification tasks. "
                 "Your task is to give corresponding meaningful and distinguishable text descriptions. Here's 
                 how you can accomplish the task:"
                 "------"
                 "##INSTRUCTIONS: "
                 "- You can try to include as much verb as possible.\n" 
                 "- Do not include descriptor that only contains 'person'"            
         },
         {
             "role": "user",
             "content": 
                 f"Please give me a long list of decompositions of steps for action: {category}"
                 f"Provide your answer only as the steps it self, {num_captions} steps in total."
                 "Please generate the response in the form of a Python list string that consists of the steps you 
                 provide."
                 "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python 
                 list string. "
                 "For example, your response should look like this: [\"step1\", \"step2\" ... ]."
         }  
    ]
)

Figure 10. Prompt for generating Temporal Descriptors. For Temporal Descriptors, our aim is to decompose the action classes in a step-
by-step manner, detailing how an action progresses over time. To enhance the adapted model’s capacity to learn action verbs during the
training phase, we prompt the LLM to include a comprehensive range of verbs.
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Figure 11. Visualization of cases where certain steps are missing. Our study demonstrates the efficacy of our proposed OD Solver in
accurately identifying instances when specific action steps are either missing or altered. As depicted in Fig. 11a, the actions ‘Engage the
drill trigger’ and ‘Release the trigger’ are absent from the video sequence. With the help of our proposed OD Solver, our model is capable
of adaptively aligning the video instance with its corresponding category descriptor, effectively compensating for these absences. This
capability is further evidenced in Fig.11b, where the action ‘Cut the wood according to the marked measurements’ is missing from the
video instance. Our OD Solver adeptly adjusts to the modified sequence by assigning lower weights to the descriptors associated with the
missing actions, demonstrating the method’s robustness in handling incomplete or altered action sequences.
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battling ropes, strength training, full body workout, endurance training
Hold the handles of the battle rope in each hand, Stand with your feet apart and knees slightly bent.
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Figure 12. Visualization of cases where our proposed Spatio-Temporal Descriptors successfully resolves category mismatch. Relying
solely on the category names, ViFi-CLIP misidentifies the equipment as a ‘flashlight’ and misinterprets ‘rope pushdown’. In contrast,
aided by Spatio-Temporal Descriptors, our OST accurately discerns the action, with a particular focus on temporally significant elements
such as the man’s hand and the rope.
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