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A. Comprehensive Analysis of NMS Algorithm
As described in earlier section, the steps of NMS can be
divided into four major tasks:
1. Filtering low-confidence objects;
2. Sorting candidates by probabilities;
3. Calculating pairwise IoU scores;
4. Pruning inactive objects.

Let C be the set of objects fed into NMS. In this first
step, the filtering step scans all objects in the set and deletes
low-confidence objects, resulting in linear time complexity
O(|C|. In the second step, the time complexity of sorting
is well known as O(|C| log(|C|)). In the third step, NMS
constructs a |C|× |C|matrix which stores the pairwise com-
parison results. IoU score computes the area of overlap be-
tween a pair of selected objects requiring a constant num-
ber of float operations. Therefore, the time complexity is
O(|C| × |C|). In the last step, the major goal is to prune
unqualified objects based on the IoU scores. The details
are listed in Algorithm 1, where S|C|×|C| stores IoU scores.
An object is marked duplicated if the IoU score S[i][j] is
greater than the NMS threshold Nt. r is a utility array tack-
ing whether the objects are marked. To obtain the worst
case, we assume that no objects are duplicated, making the
condition in line 5 always satisfied. As a result, the algo-
rithm can be simplified to a two-layer loop that traverses
half elements in the matrix S. Therefore, the overall time
complexity is independent of the rate of survival objects or
the properties of boxes although some elements are marked
removable during the pruning procedure.

B. Ablation Study
B.1. Impact of Different Objective Functions

In Section ??, we mentioned that any monotonic increasing
function can be used as the loss function. In this experi-
ment, we evaluated the performance of four qualified func-
tions: log(x), tanh(x), x2/2, and − log(1 − x). log(x).

*The primary research and contribution for this work were conducted
during a visit to IBM Research.

Algorithm 1 NMS Pruning

1: n← |C|
2: r = 0
3: D ← {}
4: for i = 1 to n do
5: if r[i] ̸= True then
6: D ← D ∪ {i}
7: for j = i+ 1 to n do
8: r[j] = bool(r[j] + S[i][j] > Nt)
9: end for

10: end if
11: end for

The derivative of tanh(x) is 1 at x = 0 and smoothly de-
creases as x increases. x2/2 is a convex function with its
minimum point at x = 0, and its derivative gradually in-
creases. The limit of − log(1 − x) as x approaches 1 from
the left is positive infinity.

Table 1 shows that x2/2 and− log(1−x) result in signif-
icantly fewer total objects compared to the other functions.
To explain this phenomenon, we divide the objects pre-
dicted by the model into two sets: S+ and S−, where S+ =
{x|conf(M(x)i) > T IoU} and S− = {x|conf(M(x)i) ≤
T IoU}. The original objective of the loss function is to
maximize the confidence of individual boxes in set S−, in-
creasing the total number of objects fed into NMS. How-
ever,− log(1−x) tends to increase the confidence of boxes
in set S− due to the rapid growth of its derivative when x
is close to 1.0. As a result, although PGD maximizes the
objective function defined in (??), − log(1 − x) yields the
worst performance. The behavior of x2/2 is similar, as its
derivative increases gradually. Therefore, an effective ob-
jective function should not only be a monotonic increasing
function but also have a monotonically decreasing deriva-
tive.
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Percentile
YOLOv5s

F = log(x) F = tanh(x) F = x2/2 F = − log(1− x)
objects boxes time objects boxes time objects boxes time objects boxes time

min 3228 392 52.8 9269 1081 25.0 3035 228 17.8 4556 511 19.3
0.10 18900 1570 52.8 19546 1829 45.9 5708 357 19.6 9553 555 23.9
0.25 23494 2817 91.8 17140 1471 148.3 6644 427 20.4 10079 647 25.0
0.50 22273 2617 167.4 19677 1961 192.1 6934 413 21.4 10955 579 26.6
0.75 22660 1630 208.5 21559 1448 227.1 8681 502 23.0 11529 644 27.9
0.90 22951 3162 241.2 22231 2585 241.6 10617 548 26.0 12422 790 29.1
max 23922 1386 241.2 22944 1382 253.0 13104 824 30.2 12632 813 39.7

Percentile
YOLOv5n

F = log(x) F = tanh(x) F = x2/2 F = − log(1− x)
objects boxes time objects boxes time objects boxes time objects boxes time

min 2890 763 13.3 4134 579 14.3 3435 210 13.0 3060 294 12.9
0.10 9012 1145 19.5 11950 1103 23.9 5295 339 14.3 8009 573 17.2
0.25 12985 1474 26.0 14064 1194 27.6 6074 355 15.0 8751 600 18.2
0.50 16755 1737 34.3 16128 1319 32.0 6920 444 15.8 9631 697 19.5
0.75 18910 1766 69.7 18276 1206 37.2 8079 448 17.1 10909 656 21.2
0.90 20901 1649 135.5 17507 1460 117.9 9361 612 18.7 11746 684 22.6
max 22303 1472 231.6 20902 1238 206.7 9946 585 25.3 15479 983 30.4

Table 1. The total elapsed time using different objective function on NVIDIA Jetson NX

B.2. Spatial Attention Evaluation

This experiment evaluates the influence of spatial attention.
Table 2 shows the experimental results on Nvidia Jetson
NX, where SA means the adversarial attack with the spa-
tial attention and PGD means the native implementation
of PGD. As can be seen, one can find that the spatial at-
tention method can generate approximately 2,000 or more
objects for the YOLOv5s and YOLOv5n models. This in-
crease in object count is due to the iterative generation of
objects from regions with fewer objects, facilitated by the
proposed spatial attention technique.

Table 3 offers a performance comparison with different
grid sizes, where Grid signifies that the image is tiled into
k× k grids. In the case of 1× 1 tiling, the configuration re-
verts to the original PGD attack, where all pixels are part of
the same grid, sharing identical weights. Upon introducing
spatial attention, specific areas can be highlighted, result-
ing in a performance gain. However, when the image is di-
vided into a 20× 20 grid, some tiles remain unhighlighted,
hindering effective attacks on those tiles. The experimen-
tal findings suggest that an optimal configuration for spatial
attention is around 5× 5.

These results demonstrate the effectiveness of the spa-
tial attention technique in generating a larger number of ob-
jects. The comparison between SA and PGD sheds light on
the potential vulnerabilities and limitations of the YOLOv5
models when exposed to adversarial attacks with spatial at-

tention.

C. Latency Attacks on Various Models

This experiment aims to comprehensively evaluate the per-
formance of the proposed latency attack on various mod-
els. To extend our analysis, we conducted additional exper-
iments on YOLOv3 model and two latest YOLO models,
namely YOLOv7 and YOLOv8. Tables 4 presents the re-
sults obtained from these models, where the elapsed time
was not measured as these models are not fully optimized
for edge devices.

The obtained results reveal the effectiveness of our at-
tack. At the 50th percentile, our attack generates 20,578
objects for YOLOv7 and 23,163 objects for YOLOv7-tiny.
Similarly, for YOLOv8, our attack generates 8,313 objects
at the 50th percentile. These numbers are in comparison
to the maximum number of objects predicted by YOLOv7
(25,200 objects) and YOLOv8 (8,400 objects). The sig-
nificant number of objects generated by our attack demon-
strates its potency. Consequently, our findings indicate that
both YOLOv7 and YOLOv8 models are susceptible to la-
tency attacks. It is worth mentioning that as the total num-
ber of objects increases, the elapsed time during the attack
is expected to rise.

We argue that object detection models with different ar-
chitectures are also vulnerable to latency attacks. However,
it is important to note that the proposed objective in (??)



Percentile
YOLOv5s YOLOv5n

SA PGD SA PGD
objects boxes time objects boxes time objects boxes time objects boxes time

min 4098 1587 18.7 3228 392 18.3 5893 1131 14.7 2890 763 14.8
0.10 23112 2034 122.2 18900 1570 117.8 11925 1421 22.6 9012 1145 27.1
0.25 24248 4653 179.6 23494 2817 161.9 16405 2303 39.8 12985 1474 35.9
0.50 24000 2250 217.8 22273 2617 209.6 22363 2315 128.9 16755 1737 59.3
0.75 24335 4514 264.2 22660 1630 232.2 20923 2372 208.3 18910 1766 175.2
0.90 24778 2340 278.4 22951 3162 246.2 21947 2659 226.7 20901 1649 210.8
max 24859 2363 293.8 23922 1386 270.5 23396 2502 258.7 22303 1472 244.6

Table 2. Results of spatial attention evaluation

Percentile
YOLOv5s YOLOv5n

Grid=1× 1 Grid=5× 5 Grid=20× 20 Grid=1× 1 Grid=5× 5 Grid=20× 20
objects boxes objects boxes objects boxes objects boxes objects boxes objects boxes

min 3421 507 7465 1235 6220 1062 3421 507 7465 1235 6220 1062
0.10 6359 983 10739 1405 8193 1412 6359 983 10739 1405 8193 1412
0.25 10696 1203 11197 1535 9706 1595 10596 1203 11197 1535 9706 1595
0.50 12557 1485 16769 1770 21520 1827 12557 1485 16768 1770 21520 1827
0.75 17671 1848 17461 2110 19781 2117 17671 1848 17461 2110 19781 2117
0.90 20647 2155 17551 2305 18491 2315 20647 2155 17551 2305 18491 2315
max 21515 2723 20202 2688 19949 2638 21514 2723 20202 2688 19949 2638

Table 3. Performance comparison with different grid size.

is specifically designed for YOLO series and may not be
the optimal objective for other architectures. To investi-
gate this further, we conducted a small experiment using the
SSD model [? ]. Our observations revealed that the number
of objects generated using our attack ranged from approx-
imately 300 to 1,000. Since SSD normalizes the probabil-
ities using the softmax function, ensuring that the sum of
probabilities for all classes is 1.0, the attack’s performance
is highly influenced by the image’s characteristics and the
target class. These findings suggest that SSD models are
indeed vulnerable to latency attacks, but further improve-
ments can be made.

We would like to emphasize that the proposed loss func-
tion defined in (4) is tailored specifically for the YOLO se-
ries. As detailed in the background section, each model em-
ploys its own unique algorithm to process the locations and
probabilities of the output objects. For instance, two-stage
detectors divide the task into two phases, resulting in the
inability to directly estimate the gradient. Some detectors
calibrate the locations based on predefined anchors. Never-
theless, there could be significant benefits in adjusting spa-
tial importance. Fig. 1 and 2 illustrate the outputs of adver-
sarial examples generated by Retinanet [? ] and FCOS [?
], respectively. As can be seen, the predictions of adversar-
ial examples produced by the standard PGD attack tend to

(a) (b)

Figure 1. The outputs of the adversarial examples by Retinanet.
1a and 1b are generated by the normal PGD attack and Overload
attack, respectively.

cluster within a small region while the proposed attack en-
sures a more widespread distribution of objects in the spatial
domain. We believe the spirit of Overload is applicable to
most detectors integrated with NMS, but the implementa-
tion details should be further studied.

D. Transfer Attack Evaluation

The transferability of adversarial attacks, where an attack
crafted for one model can be successfully applied to a



Percentile
YOLOv7 YOLOv7-tiny

Adversarial Examples Original Examples Adversarial Examples Original Examples
objects boxes objects boxes objects boxes objects boxes

min 18310 3139 0 0 18884 2398 0 0
0.10 19897 3765 6 1 23018 3259 97 9
0.25 20119 4069 18 2 23068 3390 32 3
0.50 20578 3681 30 3 23163 3313 12 1
0.75 21310 4991 10 2 23083 3519 28 3
0.90 20359 3912 27 3 23007 3708 74 9
max 22072 4243 12 1 22971 3399 36 2

Percentile
YOLOv8s YOLOv8n

Adversarial Examples Original Examples Adversarial Examples Original Examples
objects boxes objects boxes objects boxes objects boxes

min 8244 1188 0 0 7881 1652 0 0
0.10 8273 1273 46 6 8044 1747 56 9
0.25 8250 1098 28 4 7839 1530 10 1
0.50 8313 1212 76 14 7759 1884 7 1
0.75 8333 1326 133 21 7886 1918 1 1
0.90 8333 1141 51 5 8017 1658 121 23
max 8347 1268 37 5 7968 1836 85 16

Percentile
YOLOv3 YOLOv3-tiny

Adversarial Examples Original Examples Adversarial Examples Original Examples
objects boxes objects boxes objects boxes objects boxes

min 11879 2107 0 0 5760 1554 0 0
0.10 13198 2558 76 7 5873 1674 0 0
0.25 13401 2565 62 6 5884 1619 56 6
0.50 14015 2562 134 9 5940 2061 30 3
0.75 14109 2707 205 17 5867 2380 125 24
0.90 14365 2839 84 7 5981 2528 16 4
max 14172 2651 39 3 5870 1543 21 2

Table 4. Latency Attacks on YOLOv7, YOLOv8, and YOLOv3 models

Percentile
YOLOv5s YOLOv3

Adversarial Examples Original Examples Adversarial Examples Original Examples
objects boxes time objects boxes time objects boxes objects boxes

min 10778 1541 11.1 0 0 14.1 8443 1107 0 0
0.10 15771 1897 43.8 40 3 16.4 13138 1518 27 4
0.25 18167 2124 96.2 47 4 16.4 14091 1563 220 18
0.50 22755 2392 132.7 28 3 16.4 14796 1629 49 5
0.75 20338 1844 170.4 3 1 16.6 15418 1661 44 3
0.90 22384 2795 248.3 234 21 16.7 16027 1656 63 3
max 23579 1580 252.9 212 21 16.9 17684 1785 12 1

Table 5. Results of the ensemble attack

different victim model, is a common phenomenon in im-
age classification tasks. However, when testing the trans-
ferability among different models in the YOLOv5 family

for the latency attack, we did not observe this property.
One possible reason is that the object detection network
utilizes the Feature Pyramid Network (FPN), which com-



(a) (b)

Figure 2. The outputs of the adversarial examples by FCOS. 2a
and 2b are generated by the normal PGD attack and Overload at-
tack, respectively.

(a) Original image (b) Adversarial image

(c) The output of the original im-
age

(d) The output of the adversarial
image

Figure 3. An example of Overload attack for object detection.

bines features extracted from both low-resolution and high-
resolution sources. This integration of features from differ-
ent networks may lead to divergence and hinder the trans-
ferability of the attack.

Nevertheless, we explored an alternative approach
known as ensemble training to craft adversarial examples
that can deceive multiple models. In the ensemble attack,
gradients are obtained from either one candidate model or
averaged across all candidate models in each attack step.
We evaluated the performance of the ensemble attack using
a combination of YOLOv3 and YOLOv5s models. Table
5 presents the results of the ensemble attack, omitting the
execution times for YOLOv3 due to a technical issue with
compiling the model to TensorRT format.

(a) Original image (b) Adversarial image of the en-
semble attack

(c) The output of YOLOv3 (d) The output of YOLOv5s

Figure 4. An example of ensemble attack for object detection.

As observed, the ensemble attack successfully gener-
ates a significant number of objects for both YOLOv3 and
YOLOv5s simultaneously. However, comparing these re-
sults with those in Table ??, it appears that the strength of
the ensemble attack is slightly weaker than that of the na-
tive attack. To provide visual context, Figure 3 and Figure
4 illustrate the original image, the corresponding adversar-
ial image, and the results obtained from Overload and the
ensemble attack, respectively.

These findings suggest that information from multiple
models can be encoded within a single image, enabling the
ensemble attack to deceive different object detection mod-
els. However, further investigation is needed to enhance
the effectiveness and transferability of the ensemble attack
against the latency-based defense.
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