
A. ImageNet Training Configuration

For training PeLK, we use 8 GPUs and a total batch size of

4096 to train for 300 epochs. The optimizer is AdamW [4]

with momentum of 0.9 and weight decay of 0.05. The learn-

ing rate setting includes an initial value of 4 × 10−3, co-

sine annealing and 20-epoch warm-up. For the data aug-

mentation and regularization, we use RandAugment [1]

(“rand-m9-mstd0.5-inc1” as implemented by timm [9]), la-

bel smoothing coefficient of 0.1, mixup [11] with α = 0.8,

CutMix [10] with α = 1.0, Rand Erasing [12] with proba-

bility of 25% and Stochastic Depth with a drop-path rate of

10%/40%/50% for PeLK-T/S/B respectively.

B. ERF Quantitation Comparison

Following RepLKNet [2] and SLaK [3], we report the high-

contribution area ratio r to give a quantitation analysis of

ERF comparison in Table 1. Here, r denotes the pro-

portion of the smallest rectangle to the overall input area

that can encompass the contribution scores above a spec-

ified threshold t. For instance, given an area of R × R
at the center can cover t = 20% contribution scores of a

1024× 1024 input, the corresponding area ratio of t = 20%

is r = (R/1024)2. Larger r indicates a smoother distribu-

tion of high-contribution pixels. Compared with previous

CNN paradigms, our PeLK naturally takes a larger range

of pixels into accout to make decisions, which continues to

demonstrate the intuitive effect of the extremely large ker-

nel on enlarging the receptive field.

Models Kernel Size t=20% t=30% t=50%

ResNet 3-3-3-3 1.1% 1.8% 3.9%

ConvNeXt 7-7-7-7 2.0% 3.6% 7.7%

RepLKNet 31-29-27-13 4.0% 9.1% 19.1%

SLaK 51-49-47-13 6.9% 11.5% 23.4%

PeLK 51-49-47-13 7.5% 12.8% 25.9%

PeLK-101 101-69-67-13 8.1% 13.7% 26.5%

Table 1. Quantitative comparison of ERF. We use ResNet-152

and tiny size model for the other methods. larger values indicate

larger ERFs and smoother distribution of high-contribution pixels.

C. Ablation on Re-parameterization

According to RepLKNet [2], directly optimizing large ker-

nel convnets can be difficult and leads to performance

degradation. Therefore, existing large kernel paradigms re-

parameterize a small kernel (e.g., 5 × 5) to alleviate this

issue. In this part, we remove the re-parameterization trick

to see how degraded the models are. We train tiny model

for 120 epochs on ImageNet as the same in Section 3. As

shown in Table 2, our peripheral convolution still sustain
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Figure 1. Illustration of peripheral vision. Human vision pos-

sesses distinct clarity within a confined focus area, contrasted by

merely vague perception in the extensive peripheral area. Note

that all numbers are approximate values.

a good performance after removing the small convolution,

while the dense convolution suffers a significant degrada-

tion. This phenomenon implies that our peripheral convolu-

tion can alleviate the optimization difficulty of large dense

convolution by reducing the number of parameters required.

Models Conv Form w/ Rep w/o Rep ∆

RepLK dense 81.6 80.2 -1.4

PeLK peripheral 81.6 80.9 -0.7

Table 2. Ablation on Re-parameterization. We compare the

degradation of the model after removing the rep technique.

D. Peripheral Vision

The human visual field showcases a phenomenon known as

”central focus and peripheral blur” [6, 7]. According to vi-

sion science literature[5, 8], the human visual field can be

modeled as fan-shaped figures as shown in Fig 1. It consists

of three segments from the center to the periphery: central

area (θch and θcv), para-central area (θah and θav) and pe-

ripheral area (θph and θpv). The central area is the primary

part used for clear perception. Therefore, the proportion of

the focused area in the human visual system can be calcu-

lated as:

Phuman =
πθch · θcv
πθph · θpv

= 2.72% (1)

Similarly, our peripheral convolution keeps fine-grained pa-

rameters in the center, the central proportion for PeLK is:

Ppelk =
5× 5

51× 51
= 0.96% (2)

Although the values for PeLK and human are not strictly

equivalent, they both are very small ratios (< 5%), indicat-

ing that an efficient visual mechanism only requires a very

small proportion of fine-grained perception.



References

[1] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Randaugment: Practical automated data augmen-

tation with a reduced search space. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition workshops, pages 702–703, 2020. 1

[2] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang

Ding. Scaling up your kernels to 31x31: Revisiting large

kernel design in cnns. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, pages

11963–11975, 2022. 1

[3] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao

Xiao, Boqian Wu, Mykola Pechenizkiy, Decebal Mocanu,

and Zhangyang Wang. More convnets in the 2020s: Scal-

ing up kernels beyond 51x51 using sparsity. arXiv preprint

arXiv:2207.03620, 2022. 1

[4] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 1

[5] Elaine Nicpon Marieb and Katja Hoehn. Human anatomy &

physiology. Pearson education, 2007. 1

[6] Juhong Min, Yucheng Zhao, Chong Luo, and Minsu Cho.

Peripheral vision transformer. Advances in Neural Informa-

tion Processing Systems, 35:32097–32111, 2022. 1

[7] RT Pramod, Harish Katti, and SP Arun. Human peripheral

blur is optimal for object recognition. Vision research, 200:

108083, 2022. 1

[8] Hans Strasburger, Ingo Rentschler, and Martin Jüttner. Pe-
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