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1. Network Details

In this section, we provide the implementation details of the
encoders in out IPTNet. All the encoders are designed as
described in Fig. 1. Each convolutional block is followed
by LeakyReLU activations. For MLPs M1 and M2, we
use a 128-channel, four-layer, fully connected network with
ReLU activations as their shared architecture, and the last
layer of each MLP applies Sigmoid activations.

Figure 1. Flow charts of multiple encoders.

2. Impact of Lighting and Shadows

Figure 2. An illustration of a translucent curve showing the im-
pact of shadows. Shadows are generated by applying a scalar to
the pixel value. The effect of the scalar will be eliminated by the
vector normalization operator.

Our experimental setting assumes that the object is lit by
a pure white light source. If that is not the case for real-
world images, we apply the color constancy algorithm in
[5] to normalize the input images. After that, we have a
pure white illumination color.

Shadows generally have little impact on the pseudo-
albedo maps and bias maps if the shadow regions are not
very dark. For optically thick parts, as pixel values are
plotted under a linear distribution, shadows cause the cor-
responding pixel values to move along straight lines. For
optically thin parts, shadows shift the translucent curves to
different extent of nonlinearity, and later the effect is bal-
anced by the regression process. The impact of shadows on
bias maps is shown in Fig. 2. As bias maps are calculated
by the mean Euclidean distance between two normalized
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pixel values, both unshadowed and shadowed pixel values
map to the same position on the unit circle, where the pixel
on the bias map lies. However, for regions with very dark
shadows, the normalization operation will introduce large
errors due to the numerical instability.

3. Impact of Highlights and Transparency

Fig. 3 demonstrates some failure examples of our IPTNet.
Since our goal is to predict the global information, not pixel-
wise prediction, small regions of highlights are acceptable
to our pipeline. These overexposed pixels will be consid-
ered as outliers and removed during regression. However,
highlights covering a large area (i.e., too many overexposed
pixels) invalidate the calculation of the prior (the first row
of Fig. 3), as a relatively large amount of pixel values are
discarded, leading to large errors.

The second row of Fig. 3 shows that our IPTNet may
also fail on near transparent materials. This is another limi-
tation of our method.

4. Impact of Noise

Fig. 4 shows the effect of noise on the results by adding
zero mean Gaussian noise with variable standard deviation
σ to input images. A small amount of noise slightly alters
the prediction of the network as well as the calculation of
pseudo-albedo maps, because CNN effectively acts as a fil-
ter and these maps are obtained by regression. However,
the prediction accuracy decrease when the noise becomes
significant, since there will be large errors in the estimated
pseudo-albedo maps and bias maps.

5. Details about Translucent Materials’ Opti-
cal Parameters

The macroscopic bulk optical parameters of translucent
materials include the extinction coefficient σt, the single-
scattering albedo Λ and the phase function p(θ):

• the extinction coefficient σt represents the combined ef-
fect of absorption and out-scattering attenuation,

• the single-scattering albedo Λ represents the probability
of scattering instead of absorption at a scattering event,
and

• the phase function p(θ) describes the angular probability
density of the scattered direction at a scattering point.

6. BSDF Layer Details

For some translucent materials with specular reflection, we
optionally coat a dielectric BSDF layer during rendering.
The reflective index is manually set according to the mate-
rial categories (e.g., 1.5 for licite and 1.3 for water). The
effect of coating is illustrated in Fig. 5.

7. More Comparison Results
In table 1 and Fig. 6, we have compared our method with an
inverse-rendering based method [4], whose problem setting
is similar with our work. Our method generally outperforms
the method of Li et al. [4].

8. More Visualization Results
We show more visualization results about our pseudo-
albedo maps and bias maps in Fig. 7. Additionally, more
comparison results with ITN-based methods [1] and inverse
rendering based methods [2, 3] are illustrated in Fig. 8 and
Fig. 9. We also provide visualization results of ablation
studies in Fig. 10. The noise in the rendered images is due
to a low sampling rate of the renderer.
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Figure 3. Two failure examples of our method.

Table 1. Quantitative comparison with Li et al. [4] on a test set with novel shapes and lighting conditions.

σ′
t↓ Λ′↓ g↓ PSNR↑ SSIM↑

Ours 0.023 0.007 0.041 30.60 0.975
Li et al. [4] 0.011 0.116 0.107 24.33 0.929



Figure 4. Impact of the noise on the estimated pseudo-albedo maps and bias maps, as well as the final prediction.



Figure 5. Rendering without/with BSDF coating.

Figure 6. Visual comparison with Li et al. [4].



Figure 7. Demonstration of rendered images, pseudo-albedo maps and bias maps.



Figure 8. More comparison results with different variants of ITN [1].



Figure 9. More comparison results with inverse rendering based methods [2, 3]. N/A indicates that the optimized scattering parameters
are invalid and can not be rendered. Taking scene lighting conditions, Λ′

t and g as its input, Dr(σ′
t) may outperform our IPTNet (the sixth

column of the image) when it converges to correct parameters.



Figure 10. Visual comparison results of different variants of our model.



Figure 11. Test on orange juice at various concentrations.
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