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Supplementary Material

A. Appendix

The supplementary material is organized as follows:
• Section B provides more implementation details, includ-

ing data pre-processing, hyperparameter settings, and
training details.

• Section C provides hyperparameter analysis of prompt
constraint loss weight and number of scales.

• Section D provides more qualitative results on datasets of
XD-Violence [11] and UCF-Crime [9].

• Section E provides precision-recall curves.

B. Implementation details

Data Pre-processing. To extract video and audio features,
we follow approaches used in existing methods [7, 10].
Videos features of 1024 dimensions are extracted from
global pool layer by RGB-stream I3D [1] video encoder,
which is pre-trained on Kinetics [4] dataset. For 128-
dimension audio features, we leverage VGGish [3] encoder
pre-trained on YouTube [3] dataset. For computation effi-
ciency, each video snippet consists of 16 frames. To en-
sure a fair comparison, we employ the same augmentation
strategy as in [11]. For the UCF-Crime [9] and Shang-
haiTech [6] datasets, we utilize a 10-crop augmentation
strategy. This strategy involves taking crops from the center,
four corners, and their mirrored counterparts. For the XD-
Violence [11] dataset, we use a 5-crop augmentation strat-
egy, which includes crops from the center and four corners.
For text features, we use CLIP [8] text encoder to encode
the class annotations to 512-dimension text features.
Hyperparameter settings. The hidden dimension Dh of
temporal feature fusion module (TFF) is set to 128. And
initial gate weight ↵ of TFF is 0.5. The window size w of
event attention is 9. The dimension Dm of the intermediate
layer of MLP is set to 512, which is the same as the di-
mension of text features extracted by CLIP [8] text encoder.
The length of normal context prompt (NCP) is 35 for XD-
Violence and UCF-Crime, and 5 for ShanghaiTech. We set
the causal convolution kernel size to 9, 3, and 3 for each
dataset. In addition, the temperature coefficient ⌧ is initial-
ized to 0.09, 0.05, and 0.2 for each dataset respectively. The
scaling factor µ for separation is set to 10. The model pa-
rameters are initialized by Xavier [2] uniform initialization.
Training Details. The weight � and � are 1 and 8 respec-
tively to balance the weights. The scales of s are set to 2
and 3. Weight � with 0.001 is applied to balance multi-
scale loss. During training, the batch size is set to 128 and

� 0 1 3 5 6 8 9

AP(%) 87.45 87.84 88.02 87.74 88.07 88.12 87.86

Table 1. Performance comparison of different prompt constraint
loss weights.

N 1 2 3 4

AP(%) 87.19 88.02 88.21 87.78

Table 2. Performance comparison of number of scales.

the initial learning rate is 5 ⇥ 10�4 with a cosine decay
strategy. The model is trained using Adam optimizer [5].
The total training epochs are 50. For balance between com-
putational efficiency and detection performance, we set the
snippet sampling threshold to 200 during the training phase.
The epochs of NCP training are set to 10.

C. Hyperparameter Analysis

Effect of prompt constraint loss weight �. We evaluate
the effect of prompt constraint loss by comparison between
different hyperparameters � on XD-Violence, as shown in
Table 1. When � is set to 0, the prompt constraint loss
weight is not applied, resulting in an AP of 87.45%. As �
increases from 0 to 1, the AP improves slightly to 87.84%.
As � continues to increase, the AP shows a gradual im-
provement, reaching 88.12% when � equals to 8. The re-
sults prove the effect of prompt constraint loss. Prompt
constraint loss can help learnable prompt to learn semantic-
related and context-rich text feature effectively. Video fea-
tures are then enriched by text features, facilitating accurate
anomaly detection.

Effect of number of scales N . In Table 2, we evaluate
the effect of number of scales N on XD-Violence. When
only a single scale is applied in the prediction head, the re-
sult is 87.19% in AP. As the number of scales increasing
from 1 to 3, the AP gradually improves to 88.21, which
shows the effect of scale-aware prediction head. The results
demonstrate that scale-aware prediction head can benefit the
model in learning multi-scale abnormal events. Therefore,
the scale-aware prediction head can help to detect anomalies
of different lengths, facilitating precise anomaly detection.
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Figure 1. Anomaly scores of abnormal videos on XD-Violence. The Y-axis represents anomaly scores (1 for abnormal and 0 for normal),
while the X-axis represents the frame number of videos. The pink area refers to the regions where anomalies take place. The blue lines
are the predictions of our method; the gray lines are the predictions of PEL4VAD [7]; the orange lines are predictions of MMIL [9]. The
above frames are snapshots from videos and the red ranges indicate the abnormal sections.
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Figure 2. Anomaly scores of abnormal videos on UCF-Crime. The Y-axis represents anomaly scores (1 for abnormal and 0 for normal),
while the X-axis represents the frame number of videos. The pink area refers to the regions where anomalies take place. The blue lines
are the predictions of our method; the gray lines are the predictions of PEL4VAD [7]; the orange lines are predictions of MMIL [9]. The
above frames are snapshots from videos and the red ranges indicate the abnormal sections.

D. Qualitative Results

In Fig. 1, we visualize the detection results of SOTA meth-
ods in test set on XD-Violence [11]. The Y-axis repre-
sents anomaly scores, while the X-axis represents the frame
number of videos. The pink area refers to the regions
where anomalies take place. The blue lines are the pre-
dictions of our method; the gray lines are the predictions
of SOTA method PEL4VAD [7]; the orange lines indicate
the anomaly scores predicted by MMIL [9]. The above
frames are snapshots from videos and the red ranges in-
dicate the abnormal sections. When dealing with intricate
scenarios with noisy backgrounds and ambiguous abnormal
event boundaries, other methods generate noisy predictions
with false alarms and enlarged boundaries. While, as shown
in Fig. 1b, Fig. 1e and Fig. 1i, our method can not only

locate anomalies accurately, but can detect the subtle nor-
mal intervals and generate clear event boundaries as well.
As illustrated in Fig. 1c, Fig. 1d and Fig. 1g, our method
presents the capability to detect various intricate abnormal
events. Fig. 1a, Fig. 1f and Fig. 1h further demonstrate the
ability to handle long-term videos and detect the abnormal
events and event boundaries precisely.

In Fig. 2, we visualize the anomaly scores in test set of
UCF-Crime [9]. As demonstrated in Fig. 2a and Fig. 2c,
our model can detect subtle abnormal events in long-term
videos. This demonstrates the capability of our method to
model complex abnormal patterns in noisy background with
hard temporal relationship. As Fig. 2b, Fig. 2d, Fig. 2e and
Fig. 2f present, our method shows superior performance
against the baseline. This shows the effectiveness of pro-
posed abnormal-aware prompt learning which can facilitate
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Figure 3. Anomaly scores of normal videos on XD-Violence. The Y-axis represents anomaly scores (1 for abnormal and 0 for normal),
while the X-axis represents the frame number of videos. The blue lines are the predictions of our method; the gray lines are the predictions
of PEL4VAD [7]; the orange lines are predictions of MMIL [9]. The above frames are snapshots from normal videos.
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Figure 4. Anomaly scores of normal videos on UCF-Crime. The Y-axis represents anomaly scores( 1 for abnormal and 0 for normal),
while the X-axis represents the frame number of videos. The blue lines are the predictions of our method; the gray lines are the predictions
of PEL4VAD [7]; the orange lines are predictions of MMIL [9]. The above frames are snapshots from normal videos.

the model learning various and complex abnormal patterns.

In Fig. 3, we present the prediction results of normal
videos on XD-Violence. The normal videos in Fig. 3a,
Fig. 3b and Fig. 3c are hard cases with intensive camera
movement and dramatic scene changes, which are features
that coupled with abnormal patterns. These characters of
videos confuse the models [7, 9] to generate fuzzy predic-
tions and aggravate false alarms. With the enhancement of
normal context prompts, our method can accurately predict
the anomaly scores for normal videos as demonstrated in
Fig. 3a, Fig. 3b and Fig. 3c.

In Fig. 4, we show the prediction results for normal

videos on UCF-Crime [9] dataset. The normal videos de-
picted in Fig. 4a, Fig. 4b, and Fig. 4c represent challeng-
ing cases characterized by intense camera movements and
dramatic scene changes. These particular characteristics,
which are often associated with abnormal videos, tend to
confuse the models [7, 9] and regard the normal videos as
abnormal ones. However, through the integration of nor-
mal context prompts, our method achieves precise anomaly
score predictions for normal videos, as evidenced by the re-
sults shown in Fig. 4a, Fig. 4b, and Fig. 4c. The results
demonstrate that the proposed normal context prompt can
increase the discriminability of the ambiguous and fuzzy



Figure 5. Precision-recall curves of our method and baseline
model on XD-Violence. The blue line is the curve of our method,
the gray line is the curve of baseline method without abnormal-
aware prompt learning and normal-context prompt.

features, decreasing the rate of false alarm and improving
the accuracy of anomaly detection.

E. Precision-Recall Curves

Fig. 5 shows the precision-recall curves of our method
and baseline model on XD-Violence. The blue line is the
curve of our method, the gray line is the curve of base-
line method without abnormal-aware prompt learning and
normal-context prompts. The AP score of our method is
88.21% and the AP score of the baseline method is 80.82%.
As illustrated in Fig. 5, the performance is considerably im-
proved when the proposed modules are added to the base-
line, and there is a noticeable performance gap between the
blue and gray lines. This demonstrates that the proposed
abnormal-ware prompt learning can facilitate detecting var-
ious and intricate abnormal events, while simultaneously
generating clear event boundaries, leading to a decrement
in false alarm.
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