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A.1. Additional Experimental Results
Benchmark on 16 KHz impulse responses. We also eval-
uate each method on our benchmark with impulse responses
of 16 kHz sampling rate. We show the results in Table 7.
We can see that INRAS++ performs best overall, which
matches with the conclusion in Section 5.1.

More qualitative results. We provide more predicted RIR
visualization for qualitative comparison in Figure 9. We also
provide more loudness map visualization on the different
scenes for qualitative comparison in Figure 10.

Empty versus furnished room. One advantage of our
dataset is that it contains a scene in two conditions — empty
and furnished, which allows studying the difference in acous-
tic fields introduced by furniture. Due to a lack of ground-
truth comparison, we visualize the generated impulse re-
sponses from INRAS++ trained on each scene individually
as an approximation of the acoustic field. We show our re-
sults in Figure 7, where we can see that generated impulse
responses with different acoustic properties.

A.2. Implementation Details
In this section, we will demonstrate the implementation of
each baseline in detail.

AAC and Opus. We convert the raw waveform (.wav)
into AAC (.m4a) and Opus (.opus) encoding and reverse
the compression using FFmpeg commands as shown below:

1 # AAC compression
2 encode_command = f"ffmpeg -i audio.wav -t {

audio_length} -c:a aac -b:a 24k temp.m4a"
3 decode_command = f"ffmpeg -i temp.m4a -c:a

pcm_f32le -ar {sampling_rate} audio_aac.wav"
4

5 # Opus compression
6 encode_command = f"ffmpeg -i audio.wav -t {

audio_length} -c:a opus -strict -2 -b:a 24k
temp.opus"

7 decode_command = f"ffmpeg -i temp.opus -c:a
pcm_f32le -ar {sampling_rate} audio_opus.wav"

Listing 1. FFmpeg commands for audio compression

We cut the audio to be the same length (0.32s) and cor-
responding sampling rate (16K or 48K) for fair evaluation
comparison.

Note that we use a different Opus encoder which can
achieve better compression performance than NAF used [36].
Due to the heavy computation of constructing a high-
dimensional interpolation engine, we modify the baseline
algorithm by first matching the nearest neighbor of the emit-
ter in the training distribution and then performing the near-

est neighbor or linear interpolation to generate impulse re-
sponses for given listener positions.

NAF. We follow the official implementation of NAF 2,
and create 3D grid features based on the bounding boxes
of scenes. For experiments with 16 kHz sampling rate, we
use an STFT with an FFT size of 512, a window length of
256, and a hop length of 128. For 48 kHz sampling rate, we
use an STFT with an FFT size of 1024, a window length
of 512, and a hop length of 256. We perform inverse STFT
on the predicted magnitude of the RIR spectrogram with
random spectrogram phase to obtain time-domain RIR. We
set λ = 1.0 for the weight of energy decay loss when training
NAF++.

INRAS. We follow the implementation of INRAS pro-
vided by the authors in their supplementary material3, and
add an extra dimension for the emitter, listener, and bounce
point position. We changed the original bounce point sam-
pling method, which only sampled points with a specific
height. Instead, we apply Poisson sampling on the scene
meshes to obtain 256 bounce points in 3D to represent scene
geometry in a better way. To optimize multi-resolution
STFT loss, we set FFT size as {128, 512, 1024, 2048},
window length as {80, 240, 600, 1200}, and hop length as
{16, 50, 120, 240}. We set λ = 2.0 for the weight of the
energy decay loss.

NACF. We use the same architecture as INRAS for NACF.
We keep the original bounce point sampling strategy in the
paper and render visual context using VR-NeRF [66]. We
render 256×256 pixel RGB, and depth images with a field
of view of 90°. We use the surface normal of each bounce
point to determine the look-at view of the virtual camera.
Following the original paper, RGB and depth images are
down-sampled to 16× 16 and are encoded with an MLP as
visual contexts. We set λ = 2.0 for the weight of energy
decay loss. We optimize the multi-resolution STFT loss with
the same hyperparameters as INRAS.

AV-NeRF. Because we have a different setup from AV-
NeRF [33] where we have omnidirectional microphones in-
stead of orientated binaural receivers, we adopt their method
with several changes. We use VR-NeRF [66] to render 4
perspective views of 256×256 RGB and depth maps with a
field of view of 90° for each receiver’s position, and encode
them with frozen ResNet18 [23] trained on ImageNet [17].
We removed the relative angle because it does not fit our
setup. We set λ = 2.0 for the weight of energy decay loss.

2https://github.com/aluo-x/Learning Neural Acoustic Fields/
3https://openreview.net/forum?id=7KBzV5IL7W

https://github.com/aluo-x/Learning_Neural_Acoustic_Fields/
https://openreview.net/forum?id=7KBzV5IL7W


Table 7. Benchmark with 16 kHz sampling rate.

Method Variation STFT error C50 error EDT error T60 error Parameters Storage Speed
(dB) ↓ (dB) ↓ (sec) ↓ (%) ↓ (Million) ↓ (MB) ↓ (ms) ↓

C
la

ss
ic

al Linear
AAC 1.14 1.09 0.040 8.79

–
680.45

–Opus 1.06 0.80 0.032 7.48 680.45
original 1.02 0.82 0.032 6.82 3,172.77

Nearest
AAC 0.72 0.83 0.027 8.08

–
680.45

–Opus 0.58 0.61 0.020 6.96 680.45
original 0.48 0.71 0.020 7.68 3,172.77

N
eu

ra
l

NAF [36] vanilla 0.77 0.69 0.025 8.15 5.51 22.04 5.57+ decay loss 0.77 0.63 0.023 7.43

INRAS [57] vanilla 0.44 0.65 0.024 6.15 1.33 5.31 2.10+ decay loss 0.45 0.54 0.019 5.34

NACF [34] vanilla 0.45 0.58 0.020 5.47 1.52 6.05 2.39
+ temporal 0.48 0.60 0.022 6.59 1.75 7.00 2.78

AV-NeRF [33] vanilla 0.46 0.58 0.021 6.12 12.99 51.98 5.80
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Figure 7. Visualization comparison of generated RIRs from different scenes. We present visualizations of four pairs of generated impulse
responses, each sharing the same emitter-receiver position in both the empty room and the furnished room. These visualizations highlight
the variations in the acoustic fields between the two distinct scenes.

A.3. Dataset

Impulse response data processing. We followed the sine-
sweep deconvolution process as described by Farina [18] to
extract the impulse response from the signals recorded by the
microphones. For each extracted impulse response, we saved
the 3D location of the receiver, as well as the 3D location and
orientation of the sound source. The length of the impulse
response is 4 seconds and all audio data was recorded at
a sampling rate of 48 kHz and stored at a resolution of 32
bits. We show the RT60 distribution of our collected RIRs
in Figure 8

Visual rendering. We provide renderings of room meshes
as a simple overview in Figure 11.
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Figure 8. RT60 distribution.

Speaker orientation. In Figure 12, we provide visualiza-
tions of impulse response pairs from our captured dataset.
These pairs share the same emitter-listener position but dif-
fer in emitter orientations. The orientations of directional
speakers impact the resulting impulse responses.
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Figure 9. Visualization of generated RIRs. We visualize the ground truth (in blue) and predicted (in red) impulse responses of several
methods for qualitative comparison.
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Figure 10. Loudness map visualization. We visualize the intensity of predicted impulse responses over the spaces from the top view and
side view given an emitter position and its orientation. Red means loud and blue means quiet.
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Figure 11. Scene overview of RAF.

Figure 12. Visualization of ground-truth RIRs with different orientations.
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