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A. Notations
For better understanding, we briefly summarize all the no-
tations used in this paper in Tab. 7.

B. Brief review of Riemannian manifolds
Intuitively, manifolds are locally Euclidean spaces. Differ-
entials are the generalization of classical derivatives. For
more details on smooth manifolds, please refer to [34, 52].
Riemannian manifolds are the manifolds endowed with Rie-
mannian metrics, which can be intuitively viewed as point-
wise inner products. When manifolds are endowed with
Riemannian metrics, various Euclidean operators can find
their counterparts in manifolds. A plethora of discussions
can be found in [16].

Definition B.1 (Riemannian Manifolds). A Riemannian
metric on M is a smooth symmetric covariant 2-tensor field
on M, which is positive definite at every point. A Rieman-
nian manifold is a pair {M, g}, where M is a smooth man-
ifold and g is a Riemannian metric.

The main paper relies on pullback isometry to study SPD
manifolds. This idea is a natural generalization of bijection
from set theory.

Definition B.2 (Pullback Metrics). Suppose M,N are
smooth manifolds, g is a Riemannian metric on N , and
f : M → N is smooth. Then the pullback of a tensor
field g by f is defined point-wisely,

(f∗g)p(V1, V2) = gf(p)(f∗,p(V1), f∗,p(V2)), (30)

where p is an arbitrary point in M, f∗,p(·) is the differential
map of f at p, and V1, V2 are tangent vectors in TpM. If
f∗g is positive definite, it is a Riemannian metric on M,
called the pullback metric defined by f .

Definition B.3 (Isometries). If {M, g} and {M̃, g̃} are both
Riemannian manifolds, a smooth map f :M → M̃ is called
a (Riemannian) isometry if it is a diffeomorphism that sat-
isfies f∗g̃ = g.

If two manifolds are isometric, they can be viewed as
equivalent. Riemannian operators in these two manifolds
are also closely related.

A Lie group is a manifold with a smooth group structure.
It is a combination of algebra and geometry.

Definition B.4 (Lie Groups). A manifold is a Lie group,
if it forms a group with a group operation ⊙ such that
m(x, y) 7→ x⊙ y and i(x) 7→ x−1

⊙ are both smooth, where
x−1
⊙ is the group inverse of x.

At last, we briefly review the Riemannian gradient. It is
a natural generalization of the Euclidean gradient.

Definition B.5 (Riemannian gradient). The Riemannian
gradient ∇̃f of a smooth function f ∈ C∞(M) is a smooth
vector field over M, satisfying

⟨∇̃pf, V ⟩p = V (f),∀p ∈ M, V ∈ TpM (31)

C. Proofs for the lemmas, propositions, theo-
rems, and corollaries stated in the paper

C.1. Proof of Prop. 3.3

This claim can be proven by either definition [52, Def. 9.1]
or the constant rank level set theorem [52, Thm. 11.2]. We
focus on the latter.

Proof. Consider any P ∈ Sn
++ and A ∈ TPSn

++. Define
the function f(S) = ⟨LogP S,A⟩P : Sn

++ → R. For the
SPD hyperplane H̃A,P , we have H̃A,P = f−1(0). Due to
geodesically completeness, LogP is globally defined, and f
is therefore well-defined. We can rewrite f as a composi-
tion, i.e., f = h ◦ LogP , where h(·) = ⟨·, A⟩P is a linear
map.

Since LogP is a diffeomorphism, and h(·) is a linear
map, the rank of f is globally constant. So there exists a
neighborhood (e.g., the whole SPD manifold) of f−1(0),
where the rank of f is constant. According to the constant
rank level set theorem [52, Thm. 11.2], we can obtain the
claim.

C.2. Proof of Lem. 3.5

Proof. By Thm. 2.2, we have the following,

⟨LogP Q,A⟩P = ⟨ϕ∗,Pϕ−1
∗,ϕ(P )(ϕ(Q)− ϕ(P )), ϕ∗,PA⟩

(32)

= ⟨ϕ(Q)− ϕ(P )), ϕ∗,PA⟩ (33)

Therefore, the SPD hyperplane H̃Ak,Pk
corresponds to the

Euclidean hyperplaneHϕ∗,Pk
(Ak),ϕ(Pk), due to the isometry

of ϕ. Furthermore, the distances to margin hyperplanes are
equivalent to the following,

inf
ϕ(Q)

∥ϕ(S)− ϕ(Q)∥F (34)

s.t.⟨ϕ(Q)− ϕ(Pk), ϕ∗,Pk
Ak⟩ = 0. (35)

The problem above is the familiar Euclidean distance from
a point to a hyperplane. By simple computation, one can
obtain the results.



Notation Explanation

{M, g} or abbreviated as M A Riemannian manifold
TPM The tangent space at P ∈ M

gp(·, ·) or ⟨·, ·⟩P The Riemannian metric at P ∈ M
∥ · ∥P The norm induced by ⟨·, ·⟩P on TPM
LogP The Riemannian logarithmic map at P
ExpP The Riemannian exponential map at P
ΓP1→P2

The Riemannian parallel transportation along the geodesic connecting P1 and P2

Ha,p The Euclidean hyperplane
H̃Ã,P The SPD hyperplane
⊙ A Lie group operation

{M,⊙} A Lie group
P−1
⊙ The group inverse of P under ⊙
LP The Lie group left translation by P ∈ M
f∗,P The differential map of the smooth map f at P ∈ M
f∗g The pullback metric by f from g
Sn
++ The SPD manifold
Sn The Euclidean space of symmetric matrices
⟨·, ·⟩ The standard Frobenius inner product
∥ · ∥F The standard Frobenius norm
ST ST = {(α, β) ∈ R2 | min(α, α+ nβ) > 0}

⟨·, ·⟩(α,β) The O(n)-invariant Euclidean inner product
mlog Matrix logarithm
Chol Cholesky decomposition

Dlog(·) The diagonal element-wise logarithm
⌊·⌋ The strictly lower triangular part of a square matrix
D(·) A diagonal matrix with diagonal elements from a square matrix
ΠP The tangential projection at P mapping a Euclidean gradient into a Riemannian one
∇P f The Euclidean gradient of f w.r.t. P

Table 7. Summary of notations.

C.3. Proof of Lem. 3.6

Proof. For simplicity, we abbreviate ⊙ϕ and gϕ as ⊙ and g.
By abuse of notation, we further denoteQ⊙P−1

⊙ asQP−1,
where P−1

⊙ is the inversion of P under ⊙. According to
Thm. 2.2, {Sn

++,⊙} is an Abelian group, g is bi-invariant
Riemannian metric. By Lin [35, Lem. 6], any parallel trans-
portation can be expressed by a differential of left transla-
tion,

ΓP→Q = LQP−1∗,P ,∀P,Q ∈ Sn
++. (36)

C.4. Proof of Lem. 3.7

Proof. Due to the geodesic completeness of Sn
++, the exis-

tence interval of any geodesic is R. Parallel transportation
along geodesic thus exists for all t ∈ R. Through Picard’s
uniqueness in ODE theories, one can obtain the results.

C.5. Proof of Thm. 3.8

Proof.

Ak = ΓI→Pk
(Ãk) (37)

= ϕ−1
∗,ϕ(Pk)

◦ ϕ∗,I(Ak) (38)

One can obtain the results by putting Eq. (38) into Eq. (18).

C.6. Proof of Cor. 4.1

Proof. Denoting the matrix power as Powθ : Sn
++ → Sn

++,
then we have:

Powθ(I) = I, (39)
Powθ∗,I(A) = θA,∀A ∈ TISn

++. (40)

Next, we begin to prove the case one by one.
(α, β)-LEM: We define the following map

ψLEM = f ◦mlog (41)



where f : Sn → Sn is the linear isometry between the
standard Frobenius inner product and the O(n)-invariant in-
ner product ⟨·, ·⟩(α,β). Then ψLEM pulls back the standard
Euclidean metric on Sn to (α, β)-LEM on Sn

++. Putting
Eqs. (40) and (41) into Eq. (20), we have

exp(⟨ψLEM(S)− ψLEM(P ), ψLEM
∗,I (Ãk)⟩)

= exp
[
⟨f (mlog(S)−mlog(Pk)) , f(Ãk)⟩

]
= exp

[
⟨mlog(S)−mlog(Pk), Ãk⟩(α,β)

]
,

(42)

where the last equation comes from the fact that f = f∗.
(θ)-LCM: We denote

ψLCM = Dlog ◦Chol ◦Powθ, (43)

then ψLCM pulls back the Euclidean metric 1
θ2 g

E on the
Euclidean space Ln of lower triangular matrices to the
(θ)-LCM on Sn

++. The differential of Cholesky decomposi-
tion is presented in Lin [35, Prop. 4], while the differential
of Dlog can be found in [13]. Then, simple computations
show that

ψLCM
∗,I (A) = θ

(
⌊A⌋+ 1

2
D(A)

)
,∀A ∈ TISn

++. (44)

Putting Eqs. (43) and (44) into Eq. (20), we can obtain the
results.

C.7. Proof of Prop. 5.1

To prove Prop. 5.1, we first present two lemmas about the
general cases under PEMs.

One can observe that Eq. (20) and Eq. (21) are very sim-
ilar to a Euclidean MLR. However, since ϕ is normally non-
linear and Pk is an SPD parameter, Eq. (20) cannot hastily
be identified with a Euclidean MLR. However, under some
special circumstances, SPD MLR can be reduced to the fa-
miliar Euclidean MLR. To show this result, we first present
the Riemannian Stochastic Gradient Descent (RSGD) under
PEMs. General RSGD [4] is formulated as

Wt+1 = ExpWt
(−γtΠWt

(∇W f |Wt
)) (45)

where ΠWt
denotes the projection mapping Euclidean gra-

dient ∇W f |Wt
to Riemannian gradient, and γt denotes

learning rate. We have already obtained the formula for the
Riemannian exponential map as shown in Eq. (7). We pro-
ceed to formulate Π.

Lemma C.1. For a smooth function f : Sn
++ → R on

Sn
++ endowed with any kind of PEMs, the projection map

ΠP : Sn → TPSn
++ at P ∈ Sn

++ is

ΠP (∇P f) = ϕ−1
∗,P (ϕ

−∗
∗,P )(∇P f), (46)

where ϕ−∗
∗,P is the adjoint operator of ϕ−1

∗,P , i.e.
⟨V1, ϕ−1

∗,PV2⟩P = ⟨ϕ−∗
∗,PV1, V2⟩P , for all Vi ∈ TPSn

++.

Proof. Given any smooth function f : Sn
++ → R, denote

its Riemannian gradient at P as ∇̃P f ∈ TPSn
++. Then we

have the following,

⟨∇̃P f, V ⟩P = V (f),∀V ∈ TPSn
++. (47)

By Eq. (4) and canonical chart, we have

⟨ϕ∗,P ∇̃P f, ϕ∗,PV ⟩ = ⟨∇P f, V ⟩,∀V ∈ TPSn
++

∼= Sn,
(48)

where ∇P f is the Euclidean gradient. By the arbitrary of
V , we have

ϕ∗∗,Pϕ∗,P ∇̃P f = ∇P f, (49)

where ϕ∗∗,P is the adjoint operator of the linear homomor-
phism ϕ∗,P w.r.t. ⟨, ⟩.

We can describe the special case we mentioned with the
above lemma.

Lemma C.2. Supposing the differential map ϕ∗,I is the
identity map, and Pk in Eq. (20) is optimized by PEM-based
RSGD, then Eq. (20) can be reduced to a Euclidean MLR in
the codomain of ϕ updated by Euclidean SGD.

Proof. Define a Euclidean MLR in the codomain of ϕ as

p(y = k | S) ∝ exp(⟨ϕ(S)− P̄k, Āk)⟩), (50)

where P̄k, Āk ∈ Sn. We call this classifier ϕ-EMLR.
Define the SPD MLR under the PEM induced by ϕ is

p(y = k | S) ∝ exp(⟨ϕ(S)− ϕ(Pk), Ãk⟩), (51)

where Pk ∈ Sn
++, Ãk ∈ Sn.

Supposing the SPD MLR and ϕ-EMLR satisfying P̄k =
ϕ(Pk). Other settings of the network are all the same, indi-
cating the Euclidean gradients satisfying

∂L

∂P̄k
=

∂L

∂ϕ(Pk)
. (52)

The updates of P̄k in the ϕ-EMLR is

P̄ ′
k = P̄k − γ

∂L

∂P̄k
. (53)

The updates of Pk in the SPD MLR is

P ′
k = ExpPk

(−γΠPk
(∇Pk

f)) (54)

= ϕ−1(ϕ(Pk)− γϕ−∗
∗,Pk

∂L

∂Pk
) (55)

Therefore ϕ(P ′
k) satisfies

ϕ(P ′
k) = ϕ(Pk)− γϕ−∗

∗,Pk

∂L

∂Pk
(56)

= ϕ(Pk)− γϕ−∗
∗,Pk

ϕ∗∗,Pk

∂L

∂ϕ(Pk)
(57)

= ϕ(Pk)− γ
∂L

∂ϕ(Pk)
(58)

= P̄ ′
k (59)



Eq. (57) comes from the Euclidean chain rule of differential.
Let Y = ϕ(X), then we have

∂L

∂Y
: dY =

∂L

∂Y
: ϕ∗,X dX = ϕ∗∗,X

∂L

∂Y
: dX, (60)

where : means Frobenius inner product.
The equivalence of Āk and Ãk is obvious. By natural

induction, the claim can be proven.

Now, We can directly prove Prop. 5.1 by Lem. C.2.


	. Notations
	. Brief review of Riemannian manifolds
	. Proofs for the lemmas, propositions, theorems, and corollaries stated in the paper
	. Proof of prop:hyperplanesassubmanifolds
	. Proof of lem:disttohyperplanepems
	. Proof of lem:equptandlt
	. Proof of lem:ptanchorinvariance
	. Proof of thm:generalmlrpems
	. Proof of cor:spdmlrparamlemlcm
	. Proof of prop:equivalencelemmlr




