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1. Implementation Details

Hardware Setup. In this work, we have trained all mod-
els (including reproduced models) on machines equipped
with four A100, each having 40 GB of memory. Each node
would also with 300 GB CPU memory.

Training Settings. After input batch normalization, we
have applied flip with a 0.5 filp ratio and crop with a crop
size (384,600) as data augmentation method. For a fair
comparison in robustness benchmark for DLA models, we
have trained all models (including reproduced models) us-
ing the same training strategy as in Table 1.

Table 1. Training settings.

Configurations Parameter
Optimizer AdamW
Learning Rate 2e 4
Weight Decay le
Scheduler step-base
Training Epochs 24
Warm-up Step {16, 22}
Warm-up Ratio le™3
Batch-size per GPU 2

To create the benchmark, we have re-trained 38 models
for this robustness benchmark for DLA models: On Pub-
LayNet [17] dataset, we have re-trained 24 models (includ-
ing ablation study). On DocLayNet [11] and M®Doc [4]
datasets, we have re-trained 7 models each, as we have only
re-trained the models with representative performance, i.e.,
high mRD or mAP for specific perturbation, on the robust-
ness benchmark for PubLayNet [17] dataset.

2. Detail of Perturbation Taxonomy

In this section, we provide more details about our 12 docu-
ment image perturbations in 3 severity levels.

(P1) Rotation. We apply a random rotation to document
images, along with corresponding annotations. The rotation
operation on an image of a document is an affine transfor-
mation, mathematically described by a rotation matrix. If
0 is the angle of rotation, the transformation for rotating a

point (z,y) around the origin is given by:

(:17’) _ (cos(@) - sin(@)) (:17) 0
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Here, (2, y’) are the coordinates of the point after rotation.
For L1, the 6 is selected randomly from the range [—5, 5].
For L2, the 6 is chosen randomly from [—10, —5] or [5, 10],
each with 50% probability. For L3, the € is taken randomly
from [—15, —10] or [10, 15] for simulating real-world sce-
narios where object orientations vary.

(P2) Warping. We apply a pixel-wise displacement defined
by a displacement field D. This field is typically generated
using the Gaussian smoothing of random noise to simulate
elastic deformation on document paper. The warping oper-
ation is as follows:

D(Ivy):a'GU(R(I7y))ﬂ 2

Y =y+ Dy(z,y),

where R(x,y) is a random field for displacement in both the
x and y directions. GG, is a Gaussian function with standard
deviation o; the intensity or amplitude of the displacement
is controlled by a factor . D, and D, are the x and y
components of the displacement field D.

(P3) Keystoning. We apply a 3D transformation to a 2D
plane through a 3 x 3 matrix H, preserving lines but not nec-
essarily the actual angles or lengths. This operation maps
the homogeneous coordinates of a point in the source im-
age to its new coordinates in the destination image:

X X
y | =H-|y]|. “)
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Then the actual position in the transformed image is given
by normalizing with w’ by (“’/ Y2). The elements of H

W w
are typically derived from corner-point correspondences be-
tween the source and destination images. The coordinates
of destination images are selected randomly from a Gaus-

sian distribution centered around the original coordinates.
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The standard deviation of the Gaussian distribution is deter-
mined by the level.

(P4) Watermark. The process of adding a watermark in-
volves several steps, primarily dealing with image composi-
tion and potential rotation. The watermark image is rotated
by arandom angle # from range [0°, 360°] before the blend-
ing process. Then the watermark W is blended onto the
original image O using a technique called alpha blending.
The resulting pixel value [ is calculated as:

I=qay 'W+(1_a’u1) -0, )

where v, is the transparency level of the watermark, which
allows the original image to show through to varying sever-
ity levels.

(PS) Background. For complex background simulation,
we overlay multiple images onto the original image. Be-
fore background alpha composition, multiple background
images are resized and placed on a copy image B of the
original image A. The placement is defined by the posi-
tion (Zpos, Ypos), Which is randomly generated. The alpha
composition can be described as:

I=a4-A+(1—aa)-ap-B, (6)

where a4 and ap are the alpha values of the original image
and the background image, respectively.

(P6) Illumination. We introduce non-uniform illumination
into document images, simulating effects such as shadows
or glare. Mask M is created with random polygons filled
with black on a white canvas, which is then blurred using
a Gaussian filter. The illumination adjustment can be de-
scribed mathematically as a pixel-wise multiplication of the
image [ with mask M :

I'(z,y) =V - I(x,y) - M(z,y), (7

where V' is the illumination scaling factor, determined by
the severity levels and type of illumination adjustment, i.e.,
shadow with V; and glare with V.

(P7) Ink-Bleeding. We apply an erosion operation for ink-
bleeding simulation with an elliptical structuring element.
The kernel size K. determines the extent of erosion, de-
pending on severity levels. The basic mathematical formula
for erosion & of an image A by a structuring element B is:

(AeB)(z,y)= min {A(x+bs,y+0by)}. (8

(be,by)EB

To improve image quality during erosion, we upscale the
image tenfold in both dimensions before applying the ero-
sion. This is followed by downscaling to the original size,
ensuring enhanced detail and quality in the final image.

(P8) Ink-Holdout. To simulate Ink-Holdout, which is the
opposite of Ink-Bleeding, we use the dilation operation, the
inverse of erosion. The parameters for the dilation process,

including the kernel size and the number of iterations, re-
main the same as those used for the erosion operation to
maintain consistency in simulating these opposing ink be-
haviors. The mathematical formula for dilation & of an
document image A by a elliptical structuring element B is:

(A@ B)(z,y) = max {A(z—bg,y—0by)}. (9

(bz,by)EB

(P9) Defocus. The simulation of defocus blur is inherently
complex due to the variability of point spread functions
(PSFs) within diverse photographic conditions. Neverthe-
less, given that document images are frequently captured at
close quarters, it is feasible to approximate the PSF with a
Gaussian kernel function for simulating defocus blur which
demonstrated as follows:

Idefocus(xa y) = (I * G)(LE, y)? (10)
with )
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where parameters of Gaussian kernel G are correspond to
the level of severity which calibrated to manipulate the
scope and the depth of field of the blur.

(P10) Vibration. Document vibration is simulated by mo-
tion blur. The kernel for motion blur is a matrix with non-
zero values along a line. This line simulates the path of
motion. The kernel for a horizontal motion blur is:

1 1 1
1100 -0

K=-— , (12)
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where n is the number of non-zero elements in the kernel.
This kernel K is then rotated through a random angle 6
within a predetermined range, which emulates the direc-
tional motion effect. Similar to defocus blur, the motion
blur effect is applied using a convolution operation between
the image and the rotated kernel:

B(l‘, y) = (I * Krotated)($> y), (13)

where [ is the original image, K is the motion blur kernel,
and B is the blurred image.

(P11) Speckle. Document speckle is generated by super-
imposing random light (background) and dark (foreground)
blobs onto a document image. We generate random blobs
based on density, size, and roughness through randomly
placed points and Gaussian smoothing. These foreground
and background blobs are combined with the original im-
age [ as:

Tmodified = Min (max (Ioriginala Nfg) 1= Nbg) y (14)



where Np;, Npe represent the foreground and background
blob noise intensity. In the mathematical simulation of
speckle and blotch noise on document images, Gaussian
distributed blob noise are generated within the image do-
main, modulated by a blob density factor D; , which is
parametrically governed by designated severity levels.
(P12) Texture. We have endeavored to replicate the texture
interference patterns characteristic of document imagery.
This approach aims to emulate texture interference by simu-
lating the complex plant fiber structures historically present
in archival documents. We have modeled the random walk
of fiber paths as follows:

FiberPath = | > " cos(0x) - 6, ) _sin(6x) - 6|,  (15)

k=1 k=1

where 6, are angles drawn from a Cauchy distribution, J is
the step length, and k is the step number. The final fibrous
image is obtained by blending fibrous textures:

I'= (M- Tig) + (1 =M) - (1 = Lygper)) x 255, (16)

where mask M determines the application of ink and paper
textures to the original image. Within this simulation, the
spatial distribution of the fibers predominantly conforms to
a Gaussian distribution, thereby reflecting the randomness
inherent in the physical composition of paper. To impart
authenticity to the fiber noise and facilitate a more accurate
representation of document wear and quality, we have mod-
ulated the fiber density across varying noise levels.

3. Evaluation Metrics

In this work, there are two types of evaluation metrics, in-
cluding: (1) the metrics for quantifying the impacts of per-
turbations will be presented in Sec. 3.1, such as MS-SSIM,
CW-SSIM, and our proposed mPE. (2) the metrics for as-
sessing the robustness of models will be detailed in Sec. 3.2,
such as mAP and our proposed mRD.

3.1. Details of Perturbation Evaluation Metrics

To elucidate the effects of different perturbations and com-
pare perturbation evaluation metrics, we present detailed
analyses in Fig. 1, showcasing the impact of various per-
turbation categories and levels on document images.

MS-SSIM & CW-SSIM. In our robustness benchmark, we
utilize MS-SSIM (Multi-Scale Structural Similarity Index)
and CW-SSIM (Complex Wavelet Structural Similarity In-
dex) metrics, both widely recognized for assessing the sim-
ilarity between two images and pertinent for evaluating the
extent of information loss caused by such perturbations.
These indices exhibit varying sensitivity to image perturba-
tions, as in Fig. 1. However, in this study, we deviate from
the conventional usage of MS-SSIM and CW-SSIM as mere

similarity measures. Given that these metrics yield a value
of 100 for identical images, we propose using their comple-
ments relative to 100 to represent the loss of information,
i.e., 100— fMSSSIM and 100— fCW-SSIM_ This approach en-
ables a nuanced assessment of the impact of perturbations
on document images, thereby enhancing the evaluation of
model robustness in handling document perturbations.
mPE. The Mean Perturbation Effect (mPE) metric inte-
grates the effects of image quality degradation and model
performance reduction under various perturbations in DLA.
Our mPE metric reveals a consistent trend, with an esca-
lation in values corresponding to increased severity, partic-
ularly evident in Keystoning and Texture perturbations, as
shown in Fig. 1. It highlights the compounded effects of
perturbations, underscoring the importance of robustness in
document analysis models. While all metrics show height-
ened impact with more severe perturbations, mPE uniquely
captures the overall impact, serving as a dependable mea-
sure of model robustness against document perturbations
and offering a comprehensive view of model robustness.

3.2. Details of Robustness Evaluation Metrics

mAP. The mean Average Precision (mAP) is a crucial met-
ric in object detection, assessing a model’s performance
across various classes. It is calculated as the mean of the
Average Precision (AP) for each category, where AP is the
area under the Precision-Recall curve.

N
1
mAP = N;AH. 17)

Here, AP; is the Average Precision for the ith class. mAP
is especially important in multi-class detection tasks with
varying Intersection over Union (IoU) thresholds.

P-Avg. We introduce P-Avg (Perturbation Average), a novel
metric based on the mAP framework, designed to evaluate
a model’s robustness in document layout recognition across
various levels and types of perturbations. P-Avg extends
mAP to quantify a model’s ability to maintain recognition
accuracy under diverse perturbation scenarios. Based on
Eq. (17), the P-Avg can be mathematically expressed as:

M N
1
P-Avg = - > mAP,,. (18)

s=1p=1

In this formula, s represents perturbation level, p represents
perturbation categories, and mAP; ,, is the mAP calculated
for the s level of perturbation in the p** category. This
metric provides insights into the model’s adaptability and
consistency in recognizing document layouts despite the
presence of diverse and challenging distortions.

mRD. The mathematical underpinning of mRD pivots on
the interplay between degradation D and the Mean Pertur-
bation Effect (mPE). The metric is designed to normalize
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Figure 1. Comparison between perturbation evaluation metrics on 12 perturbation categories and 3 severity levels, including Image
Quality Assessment methods (MS-SSIM and CW-SSIM), Degradation w.rt a baseline, and the proposed mean Perturbation Effect (mPE).
Other metrics cannot assess specific perturbations, for example MS-SSIM is insensitive to warping perturbation, and Degradation inversely
measures texture perturbation across levels. In contrast, mPE is more balanced and inclusive to all perturbations and severity levels.

the degradation observed for a given perturbation by the

perturbation’s inherent difficulty as captured by mPE. This
normalization is crucial as it accounts for the perturbation’s
baseline impact on the images, thus offering a relativized ro-
bustness measure. The degradation D represents how much
a model’s performance deviates from its unperturbed state

when subjected to a specific perturbation and severity level.



Table 2. The robustness benchmark with the best-case result on PubLayNet-P dataset. V, L, and T stand for visual, layout, and textual
modality. ‘Ext.’ means using extra pre-training data. mAP scores are evaluated on the clean data. Best-case scores are measured to show
the upper-bound robustness performance that the DLA model could achieve at each perturbation in our robustness benchmark.

Modality Spatial Content | Inconsistency Blur Noise
. L ‘v L T ‘Ex"‘me“m‘m P2 P3|P4 P5|P6 P7 P8 |P9 Plo|Pil Pi2 |P-AvET mRDy
ResNeXt [15] LayoutParser [13] vV X X | X | 89.0 |74.8 83.3 76.8 87.5 50.9 80.5 89.1 89.2 86.7 74.8 78.3 00.5| 72.7 | 169.0
ResNet [6] Faster R-CNN [12] vV X X | X |902 (679 79.7 80.0 81.7 58.8 81.9 83.6 83.9 839 79.7 754 29.8| 739 | 1514
ResNet [6] DocSegTr [2] vV X X | X | 904 |72.0 84.1 79.1 87.1 49.5 72.7 88.3 88.2 89.2 55.0 81.3 00.9| 70.6 173.7
ResNet [6] Mask R-CNN [7] vV X X | X | 910 [652 779 78.0 79.4 54.7 79.4 81.3 81.6 814 77.0 72.1 36.4| 72.0 165.0
Swin [10] SwinDocSegmenter [1] v X X | X | 93.7 |75.6 88.4 66.3 90.2 49.5 88.3 92.6 929 93.3 81.6 68.5 01.1| 74.0 | 139.8
9 3
8 3
Swin [10] Co-DINO [18] vV X X| X | 943 |57.0 71.5 29.0 92.9 61.3 87.2 92.5 92.1 93.6 54.5 71.8 22.0| 68.8 | 153.5
InternImage [14] | Cascade R-CNN [3] vV X X | X | 941 |71.5 88.8 88.6 91.8 59.1 84.7 93.4 92.8 93.6 91.6 81.2 00.5| 78.1 110.3
InternImage [14] | DINO [16] vV X X | X | 954 |74.6 89.5 89.2 939 59.8 92.0 94.4 942 95.1 93.5 80.4 01.6| 79.9 94.4
InternImage [14] | Co-DINO [18] VX X | X | 942 [49.8 73.0 43.3 92.5 63.6 88.5 91.9 92.2 935 72.4 757 13.8| 709 | 1535
Internlmage [14] | RoDLA (Ours) VX X | X | 960 [71.9 89.0 88.4 942 64.4 92.0 94.6 94.6 95.7 93.3 81.6 00.5| 80.0 | 93.8

Table 3. The robustness benchmark with the worst-case result on PubLayNet-P dataset. Worst-case scores are measured to show the
lower-bound robustness performance that the DLA model could achieve at each perturbation in our robustness benchmark.

Modality Spatial Content | Inconsistency Blur Noise
Backbone Method ‘V L ‘E"t"aea“‘m P2 P3 |P4 P5 ‘P6 P7 P8 (P9 PIO|Pl1 pi2 |P-Avel mRDL
ResNeXt [15] LayoutParser [13] vV X X | X | 89.0 |03.7 73.5 59.2 81.9 429 78.1 81.2 71.8 15.5 03.6 289 00.1| 45.0 | 2564
ResNet [6] Faster R-CNN [12] vV X X | X |902 (206 71.0 68.8 76.3 50.4 81.1 81.8 744 763 45.1 37.2 20.3| 58.6 | 206.3
ResNet [6] DocSegTr [2] vV X X | X | 904|007 68.1 61.5 829 42.8 67.2 83.5 34.5 12.6 1.5 39.1 00.1| 412 | 2783
ResNet [6] Mask R-CNN [7] vV X X| X | 91.0 |154 704 65.8 74.5 45.6 78.8 79.9 70.2 73.9 30.1 39.5 28.2| 56.0 | 228.2
Swin [10] SwinDocSegmenter [1]|v X X | X | 93.7 |03.6 78.1 55.3 87.7 42.8 87.7 823 76.2 02.3 02.0 12.1 00.2| 44.2 | 281.2
9 3
8 3
Swin [10] Co-DINO [18] VX X | X | 943 (009 17.5 20.2 92.3 539 86.0 42.3 45.7 01.4 02.0 452 10.5| 34.8 | 342.8
InternImage [14] | Cascade R-CNN [3] vV X X | X | 941003 70.1 69.4 87.5 53.6 83.3 89.8 84.4 69.0 12.8 31.5 00.0| 543 | 174.6
InternImage [14] | DINO [16] vV X X | X | 954 (022 743 749 90.5 54.2 91.6 91.5 88.4 83.8 25.8 22.0 00.9| 58.3 147.0
InternImage [14] | Co-DINO [18] vV X X | X | 942 |00.4 26.8 28.1 90.1 58.6 87.5 66.2 80.7 02.3 03.2 30.8 09.9| 40.4 | 301.5
Internlmage [14] | RoDLA (Ours) vV X X | X | 960 [03.2 57.8 72.3 88.0 48.2 89.6 89.6 87.3 72.5 19.8 162 00.2| 53.7 | 138.7

Table 4. The detailed per-level P-Avgt results on PubLayNet-P dataset. L1, L2, and L3 stand for the severity levels from light to heavy.

Modality Rotation Warping Keystoning | Watermark | Background | [lumination | Ink-Bleeding | Ink-Holdout Defocus Vibration Speckle Texture

Backbone Method voLor B Clean) T s L 2 L 2 3L L2 13|Ll L2 L3 Ll L2 L3 |Ll L2 L3 | LI L2 13| LI L2 L3 |LI L2 L3|LI L2 L3|LI L2 L3
ResNeXt[15] |LayoutParser [13] |/ X X | X | 89.0 [74.8 29.0 03.7[83.3 77.6 735|768 68.0 59.2[87.5 85.0 81.9]50.9 42.9 44.0[80.5 78.4 78.1|89.1 87.2 812[89.2 86.9 71.8[86.7 51.9 155|748 149 3.6 |783 53.5 28.9(005 00.2 00.1
ResNet (6] Faster RONN[12] [/ X X | X | 902 |67.9 44.1 20.6|79.7 752 71.0(80.0 74.1 68.8|81.7 78.8 76.3|58.8 504 50.4|81.9 813 81.1[83.6 82.7 81.8[83.9 82.4 74.4|83.9 817 76.3|79.7 64.8 45.1|75.4 544 37.2(20.3 227 29.8
ResNet (6] DocSegTr (2] VX X| X | 904|720 122 00.7|84.1 75.7 68.1|79.1 72.9 61.5|87.1 85.5 82.9|49.5 42.8 462|727 67.9 67.2|883 86.7 83.5|882 83.9 34.5/89.2 50.6 12.6[55.0 02.9 015|813 60.3 39.1/00.9 00.1 00.1
ResNet (6] Mask R-CNN [7] VX X | X | 910|652 393 154]77.9 738 704|780 715 658|794 769 745|54.7 459 45.6|79.4 789 78.8|81.3 80.7 79.9|81.6 80.5 70.2(814 793 73.9|77.0 55.6 30.1|72.1 53.6 39.5|282 311 364
Swin [10] SwinDocSegmenter [11{v' X X | X | 93.7 |75.6 37.9 03.6|88.4 83.5 78.1(66.3 623 553(90.2 88.8 87.7|49.5 42.8 47.4|88.3 87.7 87.7|92.6 89.4 823|929 90.7 76.2|93.3 164 02.3|81.6 04.1 020|685 27.8 12.1|0L.1 00.2 00.2

9 3
8

Swin [10] Co-DINO [18] VX K| K| 943 [57.0 093 009]71.5 40.0 17.5[29.0 24.8 20.2[92.9 92.7 923[53.9 55.3 61.3[87.2 86.1 86.0(92.5 83.0 423|921 89.5 45.7(93.6 09.9 014|545 04.1 02.0[71.8 49.1 452|220 122 105
InternImage [14] | Cascade R-CNN [3] |V X X | X | 94.1 |71.5 112 00.3|88.8 81.7 70.1|88.6 81.2 69.4|91.8 89.5 87.5 53.6 57.1[84.7 833 833|934 91.5 89.8|92.8 91.5 84.4|93.6 92.2 69.0(91.6 57.6 12.8(81.2 52.8 31.5(00.5 00.I 00.0
Internlmage [14]| DINO [16] v X X| X | 954|746 265 022|895 82.7 743|892 82.6 749|939 92.4 90. 542 592[92.0 91.6 91.6 (944 92.4 91.5(94.2 93.6 88.4[95.1 93.7 83.8[935 709 25.8(80.4 39.5 22.0(013 00.9 01.6
Internlmage [14]| Co-DINO [18] v X X| X | 942|498 07.2 00.4|73.0 450 26.8{433 358 28.1|925 91.3 90. 586 63.6(88.5 87.8 87.5(919 860 66.292.2 89.9 80.7|93.5 17.8 02.3|724 080 032|757 42.6 308[13.8 09.9 10.0
InternImage [14] | RoDLA (Ours) VX X| X 960 719 199 02.989.0 80.4 68.5(88.4 81.2 72.1 942 93.0 91.6|64.4 58.4 61.9|92.0 914 95 94.6 92.4 90.8|94.6 92.9 87.3|95.7 944 83.8 933 712 38.5|81.6 512 43.6/00.5 00.2 00.1

Table 5. The detailed per-level RDJ results on PubLayNet-P dataset. L1, L2, and L3 stand for the severity levels from light to heavy.

Backbon, Method Modality | ¢ Rotation Warping Keystoning Watermark Background Illumination Ink-Bleeding Ink-Holdout Defocus Vibration Speckle Texture

ackbone ctho veT|™ o | o | e |u o2 L 2 3|u L LB|L L2 L3|L 2 13|L 2 L3|L 2 13|L L2 L3|L 12 13
ResNeXt [15] LayoutParser [13] v X X | X |0653 1143 129.8|088.1 101.7 105.9|096.3 089.0 094.0|187.3 161.6 161.6(|210.8 201.5 196.7|204.6 196.6 190.6|189.1 151.1 150.3|181.6 103.8 099.4|247.1 629.6 749.6]329.3 558.3 371.0|175.3 1839 201.5|262.3 2355 2413
ResNet [6] Faster RCNN[12] v X X | X [0832 0900 107.0|107.1 112.6 1159[083.0 072.0 071.9|274.2 2284 2115[1768 1750 1742{189.9 1702 164.5(284.6 2043 1455|2707 139.5 090.2[299.1 239.5 2102|2652 230.9 2113|1987 1804 178.0|210.1 1824 1695
ResNet [6] DocSegTr [2] VX x| x [0726 1414 133.9(083.9 1104 127.5|086.8 075.3 0887|1933 1562 15262168 201.8 188.9[286.5 292.2 285.5(203.0 157.0 131.9|198.4 127.6 2309|2006 646.6 7753|5880 637.0 379.1| 1511 157.0 1726|2613 2358 241.3
ResNet [6] Mask R-CNN [7] VX x| X (0902 097.7 114.1[1166 1190 118.3[091.3 0792 078.8(308.7 248.8 227.6|194.4 190.9 1910|2162 192.1 184.5]324.5 227.9 160.7|309.4 1546 1050[3455 270.9 231.5|300.5 291.3 269.0[225.4 183.5 171.5|189.3 1626 153.6
Swin [10] SwinDocSegmenter [1]|v X X | X |063.3 100.0 130.0|061.2 074.9 087.5|139.9 104.8 103.0|146.9 120.6 109.8|216.8 201.8 184.7|122.8 112.0 107.0{ 1284 125.1 141.5[119.4 073.7 083.9[124.5 1094.2 866.6|240.4 629.1 377.2|254.4 285.6 249.1|260.7 235.5 241.0

9 3
8

Swin [10] Co-DINO [18] v X X | X |0658 1184 131.8|055.4 078.6 102.7|044.8 0484 057.8|091.4 081.9 084.8(172.6 161.6 143.3|083.9 076.5 073.1]097.2 089.7 067.9]097.5 050.7 040.9]091.0 082.5 143.7|084.9 190.9 285.6|158.3 239.3 221.1|260.2 233.9 237.6
Internimage [14] | Cascade R-CNN [3] v/ X X | X [073.9 1430 13440591 083.1 119.5(0473 0523 070.5|122.9 113.1 1116[175.6 1637 150.6|160.5 1520 1453|1145 100.4 0815|121.1 0674 0550|1189 1021 2750[100.8 2782 335.6(151.9 1867 1941|2623 235.8 2415
InternImage [14] | DINO [16] v/ X x| x [0658 1184 131.8(055.4 078.6 1027|0448 048.4 057.8(091.4 0819 084.8|172.6 161.6 1433|0839 076.5 073.1097.2 089.7 067.9|097.5 050.7 0409|0910 082.5 143.7|084.9 190.9 2856|1583 239.3 221.1|260.2 2339 2376
InternImage [14] | Co-DINO [18] VX x| X [1300 1494 1343(1425 2498 292.5[235.4 178.5 165.7|112.4 093.7 088.4|173.0 146.1 12781207 1110 108.8]140.5 1653 270.2| 1312 080.1 068.0|120.7 10759 866.6360.6 603.5 3725|1963 227.1 196.1|227.3 2127 2174
Internimage [ 14] RoDLA (Ours) /X X | X 0728 1290 1309 0580 089.0 1259 0482 0523 0643 0869 0754 0750 1528 1468 1338 083.9 078.3 074.0093.7 089.7 073.5(090.8 0563 044.8[0799 0733 143.7]087.5 1889 2367|1486 193.0 159.8|2623 2355 241.3

4. More Results in severity level, while the worst-case uses the poorest out-

. comes which selected from result of severity levels. These
4.1. Detailed Results on PubLayNet-P metrics reveal the range of a model’s robustness to the per-

To comprehensively evaluate methods on PubLayNet-P, we turbations we have established, showing the potential fluc-
report the best and the worst results in Table 2 and Ta- tuation in robustness performance across different models.
ble 3 which according to the severity levels. The best-case Besides., exhaustive T'CSUHS for the P-Avg metric. are pre-
metric in our robustness benchmark is calculated using the sented in Table 4, while the ones for the RD metric are de-

best outcomes under each perturbation according to result tailed in Table 5.



Table 6. The robustness benchmark with the best-case result on DocLayNet-P dataset.

Modality Spatial Content | Inconsistency Blur Noise
Backbone Method v L 7 |Ext|Clean |, by ‘P4 P5 ‘P6 P7 PS8 |P9 PI0|PI1 pl2 |P-AYEtT mRD}
ResNet [0] Faster R-CNN [12] vV X X | X | 734 [37.6 652 62.1 70.2 65.8 70.6 72.1 72.5 72.3 69.4 483 35.5| 61.8 178.1
ResNet [0] DocSegTr [2] v X X | X | 693 [40.3 60.5 62.0 69.9 653 67.6 46.3 56.9 61.7 26.5 49.7 35.1| 53.5 190.7
ResNet [0] Mask R-CNN [7] vV X X | X | 735 [442 652 62.6 704 653 71.1 72.6 72.7 72.9 69.3 44.7 352| 62.2 176.1
Swin [10] SwinDocSegmenter [1]|v X X | X | 769 |48.6 674 68.6 69.9 67.8 75.1 752 76.7 752 70.6 47.6 39.1| 65.2 161.7
9 3
8 3
InternImage [14] | RoDLA (Ours) |v x X| X | 805 49.6 72.6 732 79.0 742 803 80.7 81.6 82.0 81.8 589 59.7| 728 | 1179
Table 7. The robustness benchmark with the worst-case result on DocLayNet-P dataset.
Modality Spatial Content | Inconsistency Blur Noise
Backbone Method v L 1 |Bxt|Clean|p o ps ‘le P5 ‘P6 P7 P8 |P9 PIO|PI1 Pi2 |P-AvEth mRD|
ResNet [6] Faster R-CNN [12] vV X X| X | 734 |01.4 588 463 67.4 61.0 70.1 66.2 63.2 27.7 05.3 09.9 27.5| 42.1 221.2
ResNet [6] DocSegTr [2] vV X X | X | 693 [02.6 49.1 42.7 65.8 32.5 60.3 39.8 44.7 44.6 054 234 22.0| 36.1 314.9
ResNet [0] Mask R-CNN [7] v X X | X | 735 |08.4 58.7 53.4 67.3 60.7 70.5 66.4 62.5 26.7 05.3 08.4 27.5| 43.0 220.3
Swin [10] SwinDocSegmenter [1]|v X X | X | 769 |07.2 54.6 559 68.0 58.2 749 67.8 71.0 31.9 05.0 25.2 35.7| 46.3 208.1
9 3
8 3
Internimage [14] |[RoDLA (Ours) |V X X| X | 805 043 594 59.1 74.5 70.4 80.0 77.1 73.4 773 447 263 48.7| 57.9 |157.3

Table 8. The detailed per-level P-Avgt results on DocLayNet-P dataset. L1, L2, and L3 stand for the severity levels from light to heavy.

Modality| | Rotation Warping Keystoning | Watermark Ink-Bleeding | Ink-Hold Defocus Vibration Speckle Texture
Backbone Method Ext. | Clean

VLT Ll L2 L3|LI L2 L3|Ll L2 L3|Ll L2 L3|Ll L2 L3|Ll L2 L3|Ll L2 L3 |Ll L2 L3|Ll L2 L3|Ll L2 L3|Ll L2 L3|Ll L2 L3
ResNet [6] Faster RCNN[12] |/ X X | x | 734 [37.6 11.0 014|652 60.4 58.8|62.1 52.7 463|702 68.6 67.4|658 61.6 61.0/70.6 70.5 70.1[72.1 69.8 66.2|72.5 70.0 63.2|72.3 66.5 27.7|69.4 19.6 053|483 21.5 09.9]35.5 27.5 27.7
ResNet [6] DocSegTr [2] VX X | X | 693|403 23.7 02.6[60.5 58.4 49.1|62.0 51.7 42.7]69.9 68.2 658|653 54.1 32.5|64.3 67.6 603|463 42.6 39.8[56.9 49.3 44.7|61.7 452 44.6(26.5 24.2 05.4|49.7 23.4 24.6|35.1 32.9 220
ResNet [6] Mask R-CNN (7] VX X| X | 735 |42 18.1 08.4[652 604 58.7|62.6 53.4 569|704 68.7 673|653 61.3 60.7|71.1 710 70.5|72.6 70.3 66.4|72.7 69.5 62.5(72.9 66.3 26.7[69.3 21.0 053|447 18.1 08.4|352 282 275
Swin [10] SwinDocSegmenter [11{v' X X | X | 769 [48.6 19.0 07.2|67.4 58.6 54.6|68.6 61.9 55.9|68.0 69.1 69.9|67.8 59.7 58.2|74.9 75.1 74.9|752 72.1 67.8|76.7 75.6 71.0|752 659 31.9|70.6 21.5 05.0(47.6 32.7 25.2|39.1 35.7 37.0

9 3
8

Internimage [14] | RoDLA (Ours) VX X| X 805 49.6 17.8 04.3]72.6 642 59.4732 65.8 59.1 79.0 76.4 745|742 71.1 70.4|80.3 80.2 80.0 80.7 78.4 77.1|81.6 79.0 73.4|81.5 82.0 77.3 81.8 67.5 44.7|58.9 37.8 26.3|59.7 51.3 487

Table 9. The detailed per-level RD| results on DocLayNet-P dataset. L1, L2, and L3 stand for the severity levels from light to heavy.

Modality Rotation Warping Keystoning Watermark Background Tllumination Ink-Bleeding Ink-Holdout Defocus Vibration Speckle Texture
Backbone Method Ext. c ’ N

VLT LI 12 L3 |Ll L2 L3 |Ll L2 L3|Ll L2 L3|Ll L2 L3|Ll L2 L3|Ll L2 L3|Ll L2 L3 |Ll L2 L3|Ll L2 L3|LI L2 L3|Ll 12 L3
ResNet [6] Faster RCNN[12] |V X X | x |1282 1217 122.3]146.3 1469 1417|1260 109.7 105.5|283.6 247.6 230.1|163.2 156.0 156.3|221.0 202.3 197.2|290.7 2364 190.9|282.1 179.1 114.6(299.5 263.6 263.1|276.0 2653 241.3|241.5 216.6 2030|1962 177.9 171.7
ResNet [6] DocSegTr [2] VX X | X |1228 1043 121.0[166.2 1544 1748|1266 111.9 112.6|286.6 250.8 241.2|165.6 186.5 270.6|268.6 222.0 261.9560.1 450.3 339.6|442.7 302.6 172.3|414.2 431.4 201.8 [662.5 250.1 240.9(234.6 2113 169.8|197.7 164.5 185.1
ResNet [6] Mask R-CNN [7] VX X | X |1147 1119 1137]146.3 1469 141.8|124.5 1080 084.6|281.9 246.7 230.7|165.5 157.3 157.5|217.2 198.7 1950|2864 232.9 189.5|280.0 182.0 116.9]|293.6 2654 266.9|277.0 260.6 241.2|258.0 2259 206.4|197.3 176.0 172.2
Swin [10] SwinDocSegmenter [1]{v" X X | X [1056 110.7 115.2]137.2 153.8 156.1|104.4 088.4 086.6(304.2 243.5 212.1|153.5 163.9 167.4|188.7 170.6 165.5|258.6 218.9 181.7|239.5 145.8 090.4|268.4 2682 248.1|264.6 258.9 242.0|244.6 185.7 168.5|185.5 157.8 149.5

9 3
8

Internimage [14] | RoDLA (Ours) vV X X X |1036 1124 1188 1152 1329 139.5]089.2 079.3 080.3 199.8 186.0 179.9|123.0 117.5 1187 1483 1357 132.0|201.4 169.3 129.3 1889 1254 082.8|200.1 141.7 0827 164.1 107.2 140.8|191.8 171.6 166.1 1227 119.4 121.8

4.2. Detailed Results on DocLayNet-P

To comprehensively compare the performance of different
methods across various datasets, we also present the best
and worst outcomes on the DocLayNet-P in Table 6 and
Table 7, respectively. Furthermore, comparisons between
different models performance in P-Avg and RD at different
severity levels are provided in Table 8 and Table 9.

4.3. Detailed Results on M°Doc-P

We showcase the best and worst model performances on
the MDoc-P dataset in Table 10 and Table 11. We hope
the elaborate result from three datasets illustrates the DLA
model’s robustness using data. Detailed P-Avg and RD
metrics for M®Doc-P are in Table 12 and Table 13, respec-
tively.

5. Comparison with image rectification

To fully demonstrate the significance of researching the ro-
bustness of DLA models, we will compare the direct pre-
diction results using our RoDLA model with the results ob-
tained by first rectifying the document images using a Doc-
ument Image Rectification model, followed by applying the
DLA model. For the Document Image Rectification task,
we employ the state-of-the-art DocTr [5] model. However,
it is important to note that, currently, the task of document
image rectification only considers the recovery of four types
of perturbations in our robustness benchmark: Reotation,
Warping, Keystoning, and Illumination. Therefore, the
comparison will be located in these four perturbations.

5.1. Pipeline Comparison

Fig. 2 visualizes the two different pipelines, with Fig. 2a
showing the inference flow of our RoDLA model and



Table 10. The robustness benchmark with the best-case result on M®Doc dataset.

Modality Spatial Content | Inconsistency Blur Noise
Backbone Method v L 7 |Ext|Clean |, by ‘P4 P5 ‘P6 P7 PS8 |P9 PI0|PI1 pl2 |P-AYEtT mRD}
ResNet [6] Faster R-CNN [12] vV X X | X | 62.0 |44.6 60.1 56.6 61.7 54.0 59.3 62.5 61.9 62.1 59.6 52.2 40.7| 56.3 177.2
ResNet [6] DocSegTr [2] vV X X | X | 60.3 |38.4 52.1 485 52.7 32.6 72.7 88.3 43.7 89.2 58.1 41.3 48.8| 55.5 168.6
ResNet [6] Mask R-CNN [7] v X X | X | 619 |61.7 60.6 62.3 60.3 61.8 55.8 58.9 559 51.7 61.9 59.6 62.2| 594 144.2
Swin [10] SwinDocSegmenter [1] v X X | X | 47.1 |31.4 455 429 47.0 40.3 44.8 473 46.8 47.2 463 40.7 39.1| 433 196.5
9 3
8 3
InternImage[M]‘RoDLA (Ours) ‘/ X X ‘ X ‘ 70.0 58.4 68.2 66.3 68.8 624 68.2 69.7 69.9 69.2 68.5 62.9 55.6‘ 65.7 ‘ 125.3
Table 11. The robustness benchmark with the worst-case result on M®Doc dataset.
Modality Spatial Content | Inconsistency Blur Noise
Backbone Method v L ot |Bxt|Clean iy by ‘P4 P5 ‘% P7 P8 |P9  PI0|PIl pi2 |F-AYELT mRD,
ResNet [6] Faster R-CNN [12] v X X | X | 62.0 |06.2 57.8 48.8 59.3 50.0 56.6 54.3 53.7 34.0 09.0 19.5 29.7| 39.9 223.1
ResNet [6] DocSegTr [2] vV X X | X | 60.3 |07.0 32.2 44.0 33.9 245 67.2 45.8 39.2 12.6 07.5 19.3 42.8| 313 260.0
ResNet [0] Mask R-CNN [7] vV X X | X | 619 [17.8 53.0 57.2 39.4 29.8 35.0 50.2 08.7 44.2 07.0 55.7 59.4| 38.1 298.7
Swin [10] SwinDocSegmenter [1]|v X X | X | 47.1 |07.9 40.1 35.2 45.8 37.5 43.2 46.1 429 40.0 20.7 30.6 35.7| 35.5 295.6
9 3
8 3

lntemImage[M]‘RoDLA (Ours) ‘/ X X ‘ X ‘ 70.0

23.7 64.0 60.9 67.5 58.5 67.5 67.5 68.3 63.6 34.4

477 51.7| 563 | 1780

Table 12. The detailed per-level P-Avg? results on M®Doc-P dataset. L1, L2, and L3 stand for the severity levels from light to heavy.

Modality Rotation Warping Keystoning Watermark | Background | Illumination | Ink-Bleeding | Ink-Holdout Defocus Vibration Speckle Texture
Backbone Method Ext.| Clean

VLT Lr L2 L3|Lr L2 L3|Ll L2 L3 |Ll L2 L3(LI L2 L3|LI L2 L3 |LI L2 L3|LI L2 L3|LI L2 L3|LI L2 L3|LI L2 L3|LI L2 L3
ResNet [6] Faster RCNN[12] |V X x| X | 620 |44.6 244 062|60.1 584 57.8|56.6 505 48.8[61.7 60.1 593]54.0 500 52.1]593 58.1 56.6]62.5 60.6 543|619 60.0 53.7]62.1 56.9 34.0|59.6 20.6 090|522 321 195]40.7 315 207
ResNet [6] DocSegTr [2] v X X | X | 603|384 234 07.0|52.1 37.3 32.2|48.5 47.8 44.0(52.7 343 33.9(30.3 32.6 24.5|72.7 67.9 67.2(88.3 86.7 45.8(42.7 43.7 39.2(89.2 50.6 12.6|58.1 14.6 07.5|41.3 30.4 19.3|48.8 46.6 428
ResNet [6] Mask R-CNN [7] |V X X | X | 619 |31.4 17.8 617|60.5 53.0 60.6|59.3 57.2 623|603 537 39.4|32.8 298 61.8|558 350 51.8|502 517 58.9|20.8 08.7 55.9|51.7 49.1 442|247 07.0 619|59.6 58.6 557|622 59.8 594
Swin [10] SwinDocSegmenter [1]{v X X | X | 47.1 |31.4 163 07.9]45.5 42.3 40.1|429 37.3 35.2|47.0 46.2 45.8|40.3 38.7 37.5|44.7 44.8 43.2(47.3 469 46.1 |46.8 45.6 42.9|47.2 452 40.0(46.3 33.9 20.7(40.7 34.4 30.6(39.1 35.7 37.0

9 3
8

Internimage [14]| RoDLA (Ours) [V x x| X 700 584409 237|682 660 640|663 634 609 688 687 67.5/624 602 58.5[67.5 682 67.8 69.7 67.8 67.5[68.8 69.9 68.3]69.2 68.8 63.6 68.5 542 34.4]629 53.6 477|556 517 523

Table 13. The detailed per-level RD] results on M®Doc-P dataset. L1, L2, and L3 stand for the severity levels from light to heavy.

Modality | Rotation Warping Keystoning Watermark Background Tllumination Ink-Bleeding Ink-Holdout Defocus Vibration Speckle Texture
Backbone Method Ext. c '

VLT LI L2 L3 |LI L2 L3 |LI L2 L3|Ll L2 L3 |LI L2 L3|Ll L2 L3|Ll L2 L3|L L2 L3|Ll 12 L3|L L2 L3 |L L2 L3|L L2 L3
ResNet [6] Faster RCNN[12] [V X X | X |1195 1101 118.8]156.6 1507 100.6|074.9 077.1 102.2|287.1 257.2 241.2|184.7 175.6 171.5|238.5 223.8 220.8|293.1 248.8 210.9(286.9 199.2 131.3|299.6 271.0 260.1 |281.5 264.9 239.4|237.7 207.6 1955|1905 173.7 169.6
ResNet [6] DocSegTr [2] VX X | X |1329 1115 117.8]187.9 2269 161.6|088.9 081.3 112.0|355.1 423.1 391.9(280.0 236.9 270.6|160.1 171.6 166.8|091.3 084.0 249.7|431.3 280.2 1724|0853 310.5 344.5(292.0 2849 243.4|291.5 212.9 19591645 135.5 135.0
ResNet [6] Mask R-CNN [7] VX X | X |148.1 1197 048.5|155.1 170.0 093.9|070.2 066.7 075.3|298.0 298.0 359.6(270.2 246.6 137.1|259.5 347.5 245.1|389.0 305.3 189.5|596.1 4544 125.0{381.5 320.0 220.1|525.4 310.2 100.2|200.5 126.6 107.6|121.5 102.0 098.1
Swin [10] SwinDocSegmenter [1]{v' X X | X [148.1 1219 116.7|214.0 208.8 142.7|098.5 097.7 129.5|398.0 346.7 321.4|239.8 215.2 224.0 3243 2952 288.9[411.4 335.1 248.4(399.9 271.0 161.8|417.5 344.2 236.3|374.5 220.6 208.8|294.4 200.5 168.4[195.8 163.1 152.0

9 3
8

Internlmage [14] | RoDLA (Ours) VX X x |089.8 0861 096.6 124.8 123.0 085.8|058.2 057.0 078.1 234.1 201.7 192.7|151.1 139.8 1488 190.6 170.0 163.8|236.6 2033 149.8 234.7 1499 089.9|2434 196.1 1435 2197 1528 172.6|184.3 1418 1269 1427 1225 115.1

Fig. 2c depicting the combined use of DocTr [5] for image
rectification followed by Faster R-CNN [12] inference. No-
tably, while DocTr [5] quickly rectifies spatial perturbations
(0.45s per image), it is slow in recovering documents with
illumination disturbances, typically requiring 8.2s to rectify
a single image. Furthermore, as evidenced in Fig. 2, it is
apparent that for spatial perturbations, the DocTr [5] fails to
adequately restore the original document images. Instead,
it introduces additional spatial distortions, leading to erro-
neous predictions by Faster R-CNN [12].

5.2. Result Comparison

To elucidate the distinctions between these two infer-
ence pipelines in greater detail, Table 14 showcases a
comparative analysis of the inference outcomes for our
RoDLA model and Faster R-CNN [12] on three perturba-
tion datasets. Specifically, it contrasts our model’s per-
formance against the combined DocTr [5] and Faster R-

CNN [12] approach for four types of perturbations: Rota-
tion, Warping, Keystoning, and Illumination. From Ta-
ble 14, DocTr [5] with Faster R-CNN [12] Shows a sig-
nificant drop in performance across all perturbations at the
PubLayNet-P, DocLayNet-P, and M®Doc datasets. This
suggests DocTr [5], while rectifying images, may not be
effectively handling these perturbations. Considering the
time required for document image rectification, our model
RoDLA not only demonstrates exceptional robustness but
also exhibits high efficiency.

6. Visualization Results

Beyond providing detailed performance data, to facilitate
a more intuitive understanding, this section includes visu-
alizations of selected model predictions on our robustness
benchmark (e.g., the PubLayNet-P dataset) for one docu-
ment image perturbation in each of the following categories:
Warping from Spatial, Watermark from Content, Illumina-
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(a) Our RoDLA inference pipeline under perturbations

Perturbation
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(c) Two-stage inference pipeline under perturbations, including a document image rectification model (DocTr [5]) and a DLA model (Faster R-CNN [12]).

Figure 2. Pipeline comparison between (a) our one-stage inference (RoDLA) and (c) two-stage inference (first rectification, then DLA).
Compared to (b) the ground truth, our RoDLA can obtain better DLA results.

Table 14. Result comparison between two-stage and one-stage pipelines. The P-Avgt are evaluated on PubLayNet-P, DocLayNet-P, and
MP°Doc-P datasets. ‘-’ means no document image rectification model has been implemented. Here, P-Avg only refers to the result for four
types of perturbations: Rotation, Warping, Keystoning, and Illumination.

. . Rotation Warping Keystoning Illumination

Rectification Model | DLA Model Clean L1 L2 L3 L1 L2 13 L L2 13 L1 L2 13 P-Avgt
PubLayNet-P

DocTr [5] Faster R-CNN [12] | 90.2 | 37.5 506 49.6 | 189 19.8 20.0 | 206 27.1 314|741 727 721 41.2

- Faster R-CNN [12] | 90.2 | 67.9 44.1 20.6 | 79.7 752 71.0 | 80.0 74.1 688 | 819 813 38I.1 68.8

- RoDLA (Ours) 96.0 | 71.9 199 029 | 8.0 804 685 | 884 812 721|920 914 0915 70.8
DocLayNet-P

DocTr [5] Faster R-CNN [12] | 734 | 109 21.0 209 | 045 042 040 | 048 065 078|621 614 60.8 224

- Faster R-CNN [12] | 734 | 37.6 110 014 | 652 604 588 | 62.1 527 463|706 70.5 70.1 50.6

- RoDLA (Ours) 805 | 496 178 043 | 72.6 642 594 | 732 658 59.1 | 80.3 80.2 80.0 58.9

M6Doc-P

DocTr [5] Faster R-CNN [12] | 62.0 | 12.8 25.1 242|062 07.0 07.0 | 07.0 08.7 09.1 | 537 52.6 520 22.1

- Faster R-CNN [12] | 62.0 | 446 244 062 | 60.1 584 57.8|56.6 505 488|593 58.1 56.6 48.5

- RoDLA (Ours) 70.0 | 584 409 237|682 660 640 | 663 634 609 | 67.5 682 67.8 59.6

tion from Inconsistency, Defocus from Blur, and Speckle
from Noise. We further compare the visualization of pre-
dictions from Faster R-CNN [12], Mask R-CNN [7], and
SwinDocSegmenter [1]. Observing the contrasts in Fig. 3,
it becomes evident that our RoDLA model exhibits strong
robustness against various perturbations, consistently yield-
ing better predictions that align closely with the ground
truth. In contrast, the other three models, i.e., Faster R-

CNN [12], Mask R-CNN [7], and SwinDocSegmenter [1],
demonstrate varying degrees of erroneous predictions when
confronted with different perturbations. Notably, SwinDoc-
Segmenter displays particularly pronounced inaccuracies
under the influence of these perturbations. The qualitative
analysis proves the effectiveness of our proposed RoDLA
in enhancing the robustness of DLA.



7. Discussion
7.1. Limitations and Future Works

Our benchmark, designed for testing the robustness of Doc-
ument Layout Analysis (DLA) models, currently simulates
only a subset of perturbations commonly encountered in
document images. It does not account for content tampering
or content replacement, which could significantly impact
model robustness. Additionally, our robustness benchmark
is limited to only three severity levels. This granularity
might be too coarse, and further subdivision into more nu-
anced levels could reveal subtler variations in DLA model
robustness across different intensities of perturbations. In
addition to our current robustness benchmark, we have only
separately identified potential perturbations and assessed
their impacts individually. We have not yet combined mul-
tiple perturbations on a single image with a certain proba-
bility, which would more accurately reflect real-world sce-
narios. A comprehensive evaluation of these combined per-
turbations is necessary for a more realistic assessment of
the robustness of DLA. Moreover, in the robustness eval-
uation metric, we have incorporated only two image qual-
ity assessment methods and have used the performance of
the Faster R-CNN [12] as the reference for calculating the
Mean Perturbation Effect (mPE). To enhance the objectivity
of mPE and more accurately reflect the impact of perturba-
tions on document images, it would be beneficial to include
a broader range of image quality assessment methods and
performances from various models.

7.2. Societal Impacts

Our robustness benchmark and RoDLA model for docu-
ment layout analysis bear significant implications. While
demonstrating a strong ability to withstand various pertur-
bations and achieving impressive robustness metrics, the
current evaluation of our model is confined to three doc-
ument layout datasets. This step is critical to ensuring its
applicability in diverse practical scenarios, such as digitiz-
ing historical documents, streamlining administrative pro-
cesses, or enhancing accessibility for visually impaired in-
dividuals. As we transition from controlled datasets to
varied real-life environments, continuous model refinement
is necessary to address any unforeseen challenges, ensur-
ing the model’s relevance and effectiveness. Ethical con-
siderations, particularly data integrity and impartiality, are
paramount in avoiding biases and incorrect predictions that
could have significant societal consequences. While our
model demonstrates technical robustness, its deployment
in real-world settings requires careful consideration of its
broader societal implications to ensure it contributes posi-
tively and responsibly.
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Figure 3. Visualizations on PubLayNet-P. From top to bottom: Warping, Watermark, Illumination, Defocus, and Speckle. From left to
right: the ground truth, predictions from, i.e., Faster R-CNN [12], Mask R-CNN [7], SwinDocSegmenter [1], and our RoDLA.
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