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1. More Experiments
1.1. Ablation Study

We conducted comprehensive ablation studies on the BDD-
100k [23] and LIS [2, 22] datasets, along with the subset
of the COCO [17] dataset incorporated within the Robust-
Seg dataset collection. It is important to highlight that
these datasets are unseen (zero-shot) and with real-world
degradations in our evaluations. The results, as detailed
in Table 1, underscore that every component integrated
into RobustSAM contributes positively to its overall per-
formance. This consistent enhancement across various
datasets demonstrates the robustness and adaptability of Ro-
bustSAM, particularly in zero-shot settings.

1.2. Different Backbones in RobustSAM

In Table 2, we showcase a thorough comparison of
SAM and RobustSAM across various Vision Transformer
(ViT) [4] backbones, including ViT-B, ViT-L, and ViT-H.
This comparison encompasses the numerical results on the
combined BDD-100k [23] and LIS [2, 22] datasets and
extends to the COCO [17] dataset. The data clearly il-
lustrate that RobustSAM consistently outperforms SAM
across these diverse backbones. Furthermore, in Figure 1,
we provide a comprehensive comparison of performance,
inference speed, and model size among various SAM and
RobustSAM variants, offering additional insights into the
efficiency and scalability of these models. Notably, our
models effectively enhance performance in degraded sce-
narios with only a marginal increase in computational bur-
den.

1.3. Comparison of Varying Number of Point
Prompts

To examine the interactive segmentation performance of
RobustSAM using point prompts, we have conducted a
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Figure 1. Comparison of performance, speed, and model size
among various SAM and RobustSAM variants. The suffixes
-B, -L, and -H correspond to ViT-B (Base), ViT-L (Large), and
ViT-H (Huge) versions, respectively, representing different scales
and complexities of the Vision Transformer architecture.

comprehensive comparison in Figure 2. This compari-
son assesses RobustSAM against SAM with a range of in-
put point numbers on the BDD-100k [23] and LIS [2, 22]
datasets in a zero-shot learning context. RobustSAM con-
sistently achieves superior performance throughout these
datasets compared to SAM, irrespective of the number of
input points used.

1.4. Token Visualization

In Figure 3, we provide an illustrative comparison of cross-
attention in the last token-to-image layer of the mask de-
coder between SAM’s original output token and the en-
hanced Robust Output Token of RobustSAM. This compar-
ison underscores the ability of the Robust Output Token to
achieve more focused and precise attention. It excels in ac-
curately identifying object boundaries and contents, an as-
pect often overlooked by SAM’s original output token in
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Figure 2. Comparative analysis of interactive segmentation performance using different numbers of input points on the BDD-
100k [23] and LIS [2, 22] datasets in a zero-shot setting. RobustSAM consistently surpasses SAM across diverse point quantities,
exhibiting a more pronounced enhancement, especially in scenarios with reduced prompt ambiguity on the BDD-100k dataset.

Module BDD-100k+LIS COCO

IoU PA AP APS APM APL

Baseline
SAM 0.3056 0.8911 0.5002 0.3168 0.4292 0.5243
SAM-Finetune 0.1871 0.7691 0.1321 0.0384 0.1211 0.1731
SAM-Finetune Decoder 0.2476 0.8691 0.1457 0.0391 0.1322 0.1868
SAM-Finetune Output Token 0.3194 0.9036 0.4853 0.3011 0.4312 0.5266

RobustSAM
w AMFG 0.3455 0.9059 0.5021 0.3147 0.4295 0.5273
w AMFG-F 0.3535 0.9120 0.5045 0.3150 0.4336 0.5370
w AMFG-F+AOTG 0.3651 0.9193 0.5075 0.3161 0.4349 0.5381
w AMFG-F+AOTG+ROT (ALL) 0.3717 0.9226 0.5130 0.3192 0.4416 0.5518

Table 1. Efficacy of Proposed Modules: An evaluation of the BDD-100k [23], LIS [2, 22], and COCO [17] datasets reveals that each of
the proposed modules enhances the performance of RobustSAM. (We use point prompts for BDD-100k+LIS and bounding box prompts
for COCO in this comparison.)

Model BDD-100k+LIS COCO

IoU PA AP APS APM APL

SAM-B 0.3003 0.8826 0.4589 0.2958 0.3840 0.4752
RobustSAM-B 0.3317 0.8972 0.4710 0.2961 0.4175 0.5268
SAM-L 0.3056 0.8911 0.5002 0.3168 0.4292 0.5243
RobustSAM-L 0.3717 0.9226 0.5130 0.3192 0.4416 0.5518
SAM-H 0.3384 0.9305 0.5087 0.3184 0.4430 0.5255
RobustSAM-H 0.3813 0.9367 0.5167 0.3188 0.4455 0.5697

Table 2. Performance comparison between SAM and RobustSAM across different Vision Transformer (ViT) backbones.

degraded scenes. This focused attention is particularly evi-
dent in its handling of the object’s boundaries, demonstrat-
ing RobustSAM’s enhanced capability to discern and high-
light details and structures, crucial for effective segmenta-
tion in challenging imaging conditions.

1.5. Visualization of Feature Representation

We conducted an experiment by randomly sampling 50 im-
ages for each of the six degradations from our dataset.
We ran SAM, RobustSAM w/o consistency loss and Ro-
bustSAM to extract the mask features and performed t-
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Figure 3. Comparison of cross-attention in the final decoder
layer between SAM’s original output token and the enhanced
Robust Output Token. The Robust Output Token distinctly ex-
hibits a precise focus on accurately identifying object boundaries
and contents. It further demonstrates attention to the boundary and
thin structural regions, which are typically overlooked by the orig-
inal output token.
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Figure 4. Visualization of feature representation based on dif-
ferent baselines.

SNE analysis. The results shown in Figure 4 indicate that
in the original SAM, features from the same degradation
type tended to cluster together. However, with Robust-
SAM’s feature suppression mechanism, features from dif-
ferent degradations significantly overlap each other, sug-
gesting the minimal influence of degradation on feature ex-
traction. Moreover, when consistency loss is not used, the
clustering due to same degradation is more evident com-
pared to RobustSAM, demonstrating the effectiveness of
the consistency loss.

SA-1B SAM RobustSAM
IoU/PA 0.6917/0.8719 0.7065/0.8726

Table 3. Zero-shot segmentation comparison on a subset of SA-
1B dataset [10].

1.6. Qualitative Evaluation

In our qualitative evaluation, showcased in Figure 5, we
present a comprehensive set of results illustrating the effi-
cacy of our approach in both degraded and clear (Row 3 and
8) scenarios. We adopt original SAM [10], HQ-SAM [9],
Air-Net [11] + SAM, and URIE [20] + SAM in this com-
parison. These visual comparisons clearly demonstrate the
superior segmentation capabilities of our method under var-
ious conditions. Notably, our approach maintains high ac-
curacy and detail in degraded scenes, where existing meth-
ods often struggle, effectively segmenting intricate patterns
and structures. Moreover, our method can maintain the per-
formance in clear conditions.

1.7. Quantitative Evaluation

In our quantitative evaluation, we expanded the baseline
comparisons, detailed in Tables 4, 5, and 6. Our focus
was on enhancing segmentation accuracy by preprocess-
ing images with restoration methods like MW-Net [18],
SwinIR [14], and MPR-Net [24] before applying the SAM
technique. This approach was rigorously tested on the
BDD-100k [23] and LIS [2, 22] datasets, as well as on
subsets of unseen datasets with synthetic degradations,
namely COCO [17], NDD20 [21], STREETS [19], and
FSS-1000 [13], all part of the Robust-Seg dataset collec-
tion.

Furthermore, we extended our experiments to include
fine-tuning of SwinIR, MW-Net, and Air-Net using our
degraded-clear image pairs, followed by SAM application
(referred to as SwinIR-F, MW-Net-F, and Air-Net-F). We
also fine-tuned HQ-SAM with our training data, denoted as
HQ-SAM-F. The findings indicate a marginal performance
improvement through fine-tuning, but these adaptations still
do not match the effectiveness of our proposed method.
This underscores the robustness and superiority of our ap-
proach, particularly in achieving high segmentation accu-
racy under various degrees of image degradation.

Moreover, we evaluated the performance of RobustSAM
on a specific subset of the SA-1B dataset [10], comprising
11,186 images. This evaluation was conducted in compar-
ison with the standard SAM [10] method. The outcomes,
presented in Table 3, clearly indicate that RobustSAM out-
performs SAM, demonstrating the efficacy of the proposed
RobustSAM approach.
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Figure 5. Qualitative Analysis of Segmentation: This figure offers a visual comparison to illustrate the enhanced performance of Robust-
SAM compared to current methods. Notably, Rows 3 and 8 depict scenes without degradations..



Method Point Bounding Box

IoU Dice IoU Dice

SAM 0.3056 0.3837 0.8808 0.9171
HQ-SAM 0.2943 0.3712 0.8877 0.9245

HQ-SAM-F 0.2951 0.3720 0.8906 0.9406
AirNet+SAM 0.3245 0.4550 0.8776 0.9129

AirNet-F+SAM 0.3251 0.4583 0.8781 0.9133
MPR-Net+SAM 0.3271 0.4079 0.8758 0.9174
SwinIR+SAM 0.3294 0.4117 0.8677 0.9241

SwinIR-F+SAM 0.3313 0.4120 0.8683 0.9253
MW-Net+SAM 0.3195 0.4000 0.8898 0.9379

MW-Net-F+SAM 0.3199 0.4006 0.8908 0.9387
URIE+SAM 0.3042 0.3828 0.8799 0.9165
RobustSAM 0.3717 0.8926 0.8958 0.9416

Table 4. Zero-Shot Segmentation Comparison: This figure
presents a comparison of segmentation performance on the en-
tire BDD-100k [23] and LIS [2, 22] datasets, which are unseen
datasets with real-world degradations. We utilized point and
bounding box prompts for segmentation. The notation ‘+SAM”
indicates the process of first restoring the image, followed by ap-
plying SAM for segmentation, consistent with the methodology
described in Tables 5 and 6.

Method Degrade Clear Average

IoU PA IoU PA IoU PA

SAM 0.7981 0.9555 0.8295 0.9707 0.8000 0.9565
HQ-SAM 0.8079 0.9617 0.8448 0.9756 0.8102 0.9625

HQ-SAM-F 0.8082 0.9620 0.8452 0.9760 0.8106 0.9630
AirNet+SAM 0.7988 0.9629 0.8312 0.9752 0.8008 0.9637

AirNet-F+SAM 0.7992 0.9635 0.8316 0.9760 0.8083 0.9640
MPR-Net+SAM 0.7969 0.9585 0.8227 0.9712 0.7985 0.9593
SwinIR+SAM 0.7951 0.9543 0.8210 0.9701 0.7971 0.9580

SwinIR-F+SAM 0.7956 0.9553 0.8255 0.9713 0.7983 0.9592
MW-Net+SAM 0.7713 0.9432 0.8183 0.9692 0.7813 0.9491

MW-Net-F+SAM 0.7722 0.9440 0.8192 0.9701 0.7830 0.9501
URIE+SAM 0.7904 0.9593 0.8288 0.9740 0.7928 0.9602
RobustSAM 0.8195 0.9778 0.8529 0.9817 0.8216 0.9780

Table 5. Zero-shot segmentation comparison on the whole
NDD20 [21], STREETS [19], and FSS-1000 [13] (unseen
datasets with synthetic degradations) in Robust-Seg dataset
using point prompts.

1.8. Improving SAM-prior Tasks

We validate the effectiveness of RobustSAM in enhancing
downstream tasks (i.e., dehazing [7] and deblurring [12])
that use SAM as a prior. Our results, showcased in Fig-
ure 6 and Figure 7, include both the segmentation masks
and the reconstructed outcomes for dehazing and deblur-
ring tasks. These results clearly demonstrate that employ-
ing RobustSAM as a prior significantly boosts the perfor-
mance of these tasks. This enhancement is particularly evi-
dent in degraded scenarios where RobustSAM maintains its
strong segmentation capabilities. By reliably segmenting
images even in challenging conditions, RobustSAM pro-
vides a robust foundation for subsequent image restoration

Method Performance Metrics

AP APS APM APL

SAM 0.5002 0.3168 0.4292 0.5243
HQ-SAM 0.5052 0.2920 0.4267 0.5517

HQ-SAM-F 0.5063 0.2925 0.4272 0.5518
AirNet+SAM 0.4926 0.3068 0.4263 0.5187

AirNet-F+SAM 0.4933 0.3075 0.4272 0.5203
MPR-Net+SAM 0.4986 0.3133 0.4301 0.5227
SwinIR+SAM 0.4911 0.3027 0.4211 0.5195

SwinIR-F+SAM 0.4923 0.3038 0.4219 0.5201
MW-Net+SAM 0.5027 0.3161 0.4354 0.5290

MW-Net-F+SAM 0.5033 0.3165 0.4362 0.5294
URIE+SAM 0.4980 0.3186 0.4319 0.5215
RobustSAM 0.5130 0.3192 0.4416 0.5518

Table 6. Zero-shot segmentation comparison on the whole
COCO [17] (unseen datasets with synthetic degradations) in
Robust-Seg dataset using Bounding Box prompts.

tasks, leading to improved overall outcomes in both clarity
and detail.

2. Robust-Seg Dataset

The meticulously curated Robust-Seg dataset, designed
to train and evaluate the RobustSAM model, encapsu-
lates a rich repository of 43,000 images with correspond-
ing annotated masks. These images are sourced from a
suite of renowned datasets, namely LVIS [5], ThinObject-
5k [15], MSRA10K [3], NDD20 [21], STREETS [19], FSS-
1000 [13], and COCO [17]. We have augmented this col-
lection with 15 types of synthetic alterations using the al-
bumentations [1] and imgaug [8] libraries, introducing a
diverse range of visual degradations to the dataset. The
degradations include snow, fog, rain, Gaussian noise, ISO
noise, impulse noise, re-sampling blur, motion blur, zoom
blur, color jitter, compression artifacts, elastic transforma-
tion, frosted glass blur, low light, and contrast adjustments.
Alongside these, one augmentation category is designated
for images without any modifications, preserving their orig-
inal clarity.

These synthetic degradations are meant to simulate a
breadth of challenging visual scenarios, thereby extend-
ing the robustness of the model against a spectrum of im-
age qualities. This strategic augmentation process yields
688,000 image-mask pairs, significantly expanding the
dataset’s volume and variety. The specific quantities of
images drawn from each contributing dataset are detailed
in Table 7.

For a visual demonstration of the augmented images and
their varied degradations, please refer to Figure 8, where we
showcase the synthetic effects introduced to the dataset.



LVIS [5] ThinObject-5k [15] MSRA10K [3] NDD20 [21] STREETS [19] FSS-1000 [13] COCO [17] Total

Image Number 20252 4748 10000 1000 1000 1000 5000 43000

Table 7. Data composition of our constructed Robust-Seg dataset.

Input Ground Truth

Mask-SAM Dehaze-SAM
(PSNR: 20.838, SSIM: 0.8422)

Mask-RobustSAM Dehaze-RobustSAM
(PSNR: 22.029, SSIM: 0.8912)

Figure 6. Enhancing SAM-based Dehazing Method: A qual-
itative demonstration of RobustSAM’s superiority in refining the
SAM-based single image dehazing.

3. Implementation Details

3.1. Network Architecture

During training RobustSAM on the composed Robust-Seg
dataset, we fix the model parameters of the pre-trained SAM
model (gray blocks in Fig. 2 of the main paper) while only
making the proposed RobustSAM learnable, including Ro-
bust Output Token (ROT), Anti-Degradation Output Token

Input Ground Truth

Mask-SAM Deblur-SAM
(PSNR: 26.514, SSIM: 0.7974)

Mask-RobustSAM Deblur-RobustSAM
(PSNR: 27.704, SSIM: 0.8669)

Figure 7. Enhancing SAM-based Deblurring Method: A qual-
itative demonstration of RobustSAM’s superiority in refining the
SAM-based single image deblurring.

Generation (AOTG) module, Anti-Degradation Mask Fea-
ture Generation (AMFG) module and a three-layer MLP
which is used to generate the final robust mask. The code
will be made publicly available.

AMFG module. The AMFG module first passes the input
feature through the Instance Normalization (IN) and Batch
Normalization (BN) layers, respectively. The ReLU activa-
tion function is applied to the normalized features. Then,
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Figure 8. Illustrative samples of images with synthetic degradations from the Robust-Seg dataset.

we convolve both output features using a 3×3 convolution
layer with padding one and sum them up together. Next, a
selector network will be used to generate two attention maps
(which have the same shape) based on the summed feature.

There are several steps in the selector network to gener-
ate attention maps. First of all, we utilize an adaptive aver-
age pooling layer to reshape the input feature. The reshaped
feature is then processed using a fully connected layer, fol-
lowed by the ReLU activation function. Next, two fully
connected layers adjust the dimensions of the input features
and generate two unnormalized attention maps. Both atten-
tion maps are stacked, and the Softmax function is applied
to normalize the attention maps between 0 and 1. Lastly, the
normalized attention maps will perform element-wise mul-
tiplication with the input features of the selector network.

Following the aforementioned process, we can obtain an
enhanced feature. To compensate for any semantic informa-
tion that may have been lost, this enhanced feature is con-
catenated with the original input features along the channel
dimension. Then, we choose the squeeze-and-excitation [6]
approach to refine the concatenated feature.

The output feature of the squeeze-and-excitation module
will then be transformed using the Fourier transform to ob-
tain phase components and amplitude components, respec-
tively. After that, we apply a 1×1 convolution with zero
padding and stride one on the amplitude components to re-
move degradation elements. Next, an inverse Fourier trans-
form is performed to restore the refined features to their
original spatial representation.

Finally, a combination of two transposed convolution
layers with 2×2 kernels and stride two is applied to align
the dimension and generate the final output feature of the

AMFG module.
AOTG module. On the other hand, the AOTG module con-
sists of two IN layers and an MLP network. The original ro-
bust output token will first pass through the IN layers to fil-
ter out information sensitive to degradation-related details.
After that, an MLP is applied to adjust the dimension of the
robust output token. There are two fully connected layers
inside the MLP, with a ReLU activation function between
them.

3.2. Prompt Generation

We follow the same inference pipeline of SAM but use the
mask prediction from robust output token as the final mask
prediction. For box-prompting-based evaluation, we utilize
the ground truth mask to generate four corner coordinates
of the bounding box. Then, the coordinates are used as
the box prompt to feed into our RobustSAM model. For
point-prompting-based evaluation, we randomly sample the
points from the ground truth masks and use them as the in-
put point prompts.

3.3. Evaluation Protocol

We employ several metrics to assess our model’s perfor-
mance:
Intersection over Union (IoU) is a common metric used
to measure segmentation accuracy on a particular dataset.
It is defined as the area of overlap between the predicted
and ground truth segmentation divided by the area of union
between the predicted and ground truth segmentation. The
IoU metric is given by:

IoU =
|P ∩G|
|P ∪G|

(1)



where P represents the set of pixels in the predicted seg-
mentation, and G is the set of pixels in the ground truth
segmentation. Higher IoU values indicate better segmenta-
tion accuracy.
Dice Coefficient (Dice) [16], often referred to as the Dice
Similarity Coefficient (DSC), is a statistical tool that mea-
sures the similarity between two sets of data. In the context
of image segmentation, it quantifies the similarity between
the predicted segmentation and the ground truth. The Dice
Coefficient is calculated as follows:

Dice =
2|P ∩G|
|P |+ |G|

(2)

where |P ∩ G| represents the common elements (overlap-
ping pixels) between the predicted and ground truth sets,
and |P | and |G| are the total elements in each set, respec-
tively. Like IoU, a higher Dice score indicates greater simi-
larity between the predicted and actual segmentations.
Pixel Accuracy (PA) quantifies the proportion of correctly
classified pixels in an image. It is calculated as follows:

PA =

∑N
i=1 ⊮(pi = gi)

N
(3)

where N is the total number of pixels in the image, pi rep-
resents the predicted class of pixel i, and gi is the ground
truth class of pixel i. The function ⊮(pi = gi) is an indi-
cator function that equals 1 when the predicted class of a
pixel matches its ground truth class and 0 otherwise. The
numerator sums up all instances where the predicted and
actual classes of pixels are the same, and the denominator
is the total number of pixels. A higher PA indicates better
accuracy of the model in classifying each pixel.
Average Precision (AP) measures the average of precision
scores at different thresholds. It is a way to summarize the
precision-recall curve into a single value representing over-
all segmentation accuracy. AP is calculated as follows:

AP =
1

Nthres

Nthres∑
t=1

Precision(t) (4)

where Nthres is the total number of threshold levels used,
and Precision(t) is the precision of the segmentation at a
specific threshold t. In practice, AP is computed by taking
the average of precision values calculated at several prede-
termined threshold levels. These levels typically range from
0 to 1, indicating the probability threshold at which a pixel
is classified as part of the segmented object. A higher AP
value indicates a better model performance across various
threshold levels.
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