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Supplementary Material

A. Overview

This supplementary material contains the following parts:
• Implementation details (Appendix B). We provide full

details regarding the dataset formulation and experimen-
tal settings.

• Additional results (Appendix C). We provide additional
examples of our method, including additional global and
local prompts, results on human avatar editing, and we
further demonstrate the potential of our multi-prompt ed-
itor to handle a large number of prompts.

• Additional ablation study (Appendix D). We provide
additional ablation studies of SHAP-EDITOR on the ini-
tialisation method, the choice of στ , and the attention
maps used to guide the regularisation loss for local edit-
ing.

• Extended discussion on prior methods (Appendix E).
We discuss the difference between our SHAP-EDITOR
and other related 3D editing methods.

• Failure cases (Appendix F). We provide failure cases of
our method qualitatively.

• Ethics (Appendix G). We provide ethics discussion of
data used in our paper.

B. Implementation details

B.1. Dataset formulation

In this section, we provide more details regarding the con-
struction of the training and evaluation datasets.

Training dataset. The training dataset specifies a set of
3D objects used to train different instructions. There are in
total 33 object classes, each containing up to 10 instances.

Specifically, we use Shap-E-generated objects spanning
20 object classes: apple, banana, candle, cat, chair, corgi,
dinosaur, doctor, duck, guitar, horse, microphone, penguin,
pineapple, policeman, robot, teapot, teddy bear, toy plane,
vase

In addition, we use 3D objects from OmniObject3D [11]
spanning 21 object classes: bear, cat, cow, dinosaur,
dog, duck, elephant, giraffe, guitar, hippo, mouse, panda,
pineapple, rabbit, rhino, scissor, teapot, teddy bear, toy
plane, vase, zebra

Note that, we manually filter out the invalid instruction-
instance pairs during training. For example, we consider it
unreasonable to “add a Santa hat” to “chairs”, thereby dis-
carding such pairs. Consequently, we obtain a set of valid
object classes for each editing instruction during training,
as summarised in Tab. A1.

Evaluation dataset. The evaluation dataset consists of
20 high-quality instance-instruction pairs (12 global edit-
ing pairs and 8 local editing pairs), with the details listed
in Table A2. In summary, there are 3 and 2 editing instruc-
tions for global and local editing, respectively, with 8 Shap-
E generated objects and 7 instances sourced from OmniOb-
ject3D. Note that none of the instances in the evaluation
dataset are utilised for training purposes.

B.2. Experimental details

Shap-E settings. The encoder h takes as input an RGB
point cloud (16384 points) and different views (20) of the
3D asset from random camera angles at 256 × 256 reso-
lution. The outputs of the encoder are latents with shape
1024× 1024.

The decoder outputs the parameters of a neural field rep-
resented as a 6-layer MLP. The weights of the first four
layers are linear transformations of the latent, while the
weights of the last two layers are fixed. The output fea-
ture vector computed through the MLP is then mapped to
the neural field’s density and RGB values (or alternatively,
SDF and texture color) using different heads.

Finally, Shap-E uses a generative latent-space model
for which it employs a transformer-based diffusion ar-
chitecture akin to Point-E [8], with latent dimensions of
1024 × 1024. It offers two pre-trained conditional diffu-
sion models: image-conditional and text-conditional. The
image-conditional approach, paralleling Point-E, augments
the transformer context with a 256-token CLIP embedding.
The text-conditional model introduces a single token to the
transformer context. We use the text-conditional model in
our paper.

SDS with classifier guidance. During the Score Distilla-
tion Sampling (SDS) process, we adopt the classifier-free
guidance [4] to enhance the signal of each underlying 2D
model for distillation purposes. Specifically, for the text-
guided image-to-image (TI2I) SDS, we define:
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where γI and γT correspond to image and text guidance
scales, respectively. Then:
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Editing type Instruction Object class

Global “Make it look like made of gold”

apple, banana, candle, cat, chair, corgi, dinosaur, doctor, duck, guitar, horse,
microphone, penguin, pineapple, policeman, robot, teapot, teddy bear, toy plane, vase;

bear, cat, cow, dinosaur, dog, duck, elephant, giraffe, guitar, hippo, mouse,
panda, pineapple, rabbit, rhino, scissor, teapot, teddy bear, toy plane, vase, zebra

Global “Make it look like a tiger” cat, corgi, dinosaur, duck, horse, penguin, teddy bear; bear, cat, cow, dinosaur,
dog, duck, elephant, giraffe, hippo, mouse, panda, rabbit, rhino, teddy bear, zebra

Global “Make its color look like rainbow”

apple, banana, candle, cat, chair, corgi, dinosaur, doctor, duck, guitar, horse,
microphone, penguin, pineapple, policeman, robot, teapot, teddy bear, toy plane, vase;

bear, cat, cow, dinosaur, dog, duck, elephant, giraffe, guitar, hippo, mouse,
panda, pineapple, rabbit, rhino, scissor, teapot, teddy bear, toy plane, vase, zebra

Local “Add a Santa hat to it” cat, corgi, dinosaur, doctor, duck, horse, penguin, policeman, teddy bear; bear, cat, cow,
dinosaur, dog, duck, elephant, giraffe, hippo, mouse, panda, rabbit, rhino, teddy bear, zebra

Local “Make it wear a blue sweater” cat, corgi, dinosaur, doctor, duck, horse, penguin, policeman, teddy bear; bear, cat, cow,
dinosaur, dog, duck, elephant, giraffe, hippo, mouse, panda, rabbit, rhino, teddy bear, zebra

Table A1. Training dataset formulation. The object classes in bold are sourced from OmniObject3D, whereas the remaining classes are
generated from text prompts using Shap-E.

Editing type Instruction Instance

“Make it look like made of gold” “A bird”, “An apple”, “A scissor”, “A vase”
Global “Make it look like a tiger” “A cat”, “A corgi”, “A dinosaur”, “A zebra”

“Make its color look like rainbow” “A chair”, “A teapot”, “A guitar”, “A pineapple”

Local “Add a Santa hat to it” “A corgi”, “A penguin”, “A robot”, “A dinosaur”, “A teddy bear”
“Make it wear a blue sweater” “A corgi”, “A penguin”, “A teddy bear”

Table A2. Evaluation dataset formulation. The instances in bold are sourced from OmniObject3D, whereas the remaining instances are
generated from text prompts using Shap-E. The specific object instances used for evaluation are not seen during training.
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For global editing, where only TI2I SDS is applied, we
consider a default setting of guidance scales (γI , γT ) =
(2.5, 50). For local editing, we adopt the guidance scales
(γI , γT , γ

′
T ) = (2.5, 7.5, 50).

Loss configuration. In terms of the overall loss for global
editing, we consider a weighted combination of TI2I and
global regularisation losses,

Lglobal(x
s,xe,ds,de) = λTI2I · LSDS-TI2I(x

e |xs, y)

+ λreg-global · Lreg-global(d
e,ds), (9)

with loss scales indicated by λTI2I and λreg-global, respec-
tively.

For local editing, we use a weighted combination of the

TI2I, T2I, and local regularisation losses:
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where λTI2I and λT2I denote corresponding loss scales, and
Lreg-local(x

s,xe,ds,de,m) is defined by Eq. 4 in the main
text.

Estimation of local editing region. An estimate of lo-
cal editing regions can be obtained by extracting the cross-
attention maps from pre-trained 2D models (i.e., Mag-
icBrush). Specifically, given an example editing prompt
“Add a Santa hat to it”, we first calculate the cross-attention
maps between the image features and the word token “hat”.
We then average all cross-attention maps corresponding to
feature resolution 32× 32 at a particular timestep t = 600.
The averaged map undergoes a series of post-processing
steps, including (i) bilinear upsampling to a higher resolu-
tion at 128 × 128; (ii) hard thresholding at 0.5; (iii) spatial
dilation by 10 pixels; (iv) Gaussian blurring by 5 pixels.
The final mask m is then adopted as an approximation of
the editable region, and used in Eq. 4 in the main text.

Model settings. As mentioned previously, we consider
two variants in our method, namely Ours (Single-prompt)



and Ours (Multi-prompt). We train both methods on ob-
jects from the entire training dataset, to ensure their appli-
cability across multiple instances of various categories.

In terms of the editing instructions, Ours (Single-
prompt) is considered as our default model and designed
to handle one prompt at one time. Consequently, it requires
5 independent models for each of the editing instructions in
the evaluation dataset. In contrast, Ours (Multi-prompt) is
trained on a combination of editing instructions and is capa-
ble of performing different edits according to the input text
prompt. We train this multi-prompt model on all 5 instruc-
tions from the evaluation dataset simultaneously.

Architecture details. For SHAP-EDITOR’s architecture,
we use a similar network architecture as the text-conditional
diffusion model in Shap-E [6], a transformer-based net-
work. The original Shap-E text-to-3D network takes a noisy
latent στr

s+ατϵ as input and directly predicts the original
clean latent rs. Instead, the goal of our editor is to trans-
form the original latent rs to an edited one. Therefore, to
support (στr

s+ατϵ, r
s) as our input, we add additional in-

put channels to the first linear projection layer. All weights
are initialised by the weights of the pre-trained Shap-E text-
to-3D diffusion model, while the weights that apply to the
additional input channels are initialized to zeros following
a similar setting to [1].

Rendering details. During the training phase, camera po-
sitions are randomly sampled using a circular track. This
track has a radius of 4 units and a constant elevation angle of
30◦. The azimuth angle varies within the range of [−180◦,
180◦]. For loss computation, images of the source NeRF
and edited NeRF are rendered at a resolution of 128× 128.

Training details. We adopt a constant learning rate of
1e−4, utilising the Adam optimiser with β = (0.9, 0.999), a
weight decay of 1e−2, and ϵ = 1e−8. The batch size is 64.
We train our single-prompt and multi-prompt models for
150 and 500 epochs, respectively. We use the same timestep
for ϵ̂TI2I(x

e
t ;x

s, y, t) and ϵ̂T2I(x
e
t ; y

e, t), which is randomly
sampled from [0.02, 0.98] following the setting in [9]. We
also adopt an annealing schedule for the max timestep. Af-
ter 100 and 300 epochs for the single- and multi-prompt
versions, respectively, the max timestep of t decreases with
a ratio of 0.8 for every 10 epochs and 50 epochs. The an-
nealing scheduler helps the model capture more details in
the late training.

We set λT2I = λTI2I = 1, and the regularisation terms
λphoto = 1.25 and λdepth = 0.8 for local editing and
λreg-global = 5 for global editing in order to better preserve
structure. We also employ a linear warmup schedule for the
photometric loss in the early epochs. This helps the model
to first focus on generating correct semantics, such as “a
penguin wearing a Santa hat”, and then gradually recon-
structing the appearance and shape of the original object

(e.g., the “penguin”) with the help of masked loss, i.e. re-
covering the identity of the original object. The training
of each single-prompt model takes approximately 10 GPU
hours, and the multi-prompt model takes 30 GPU hours, on
the NVIDIA RTX A6000.

Evaluation details. During evaluation, to compute the
CLIP metrics and the Structure Distance, we uniformly
sample 20 viewpoints following the same recipe as in the
training phase. All rendered images are resized to 256×256
to ensure a fair comparison across different methods.

C. Additional Results

Additional visualisations. Figure A1 provides additional
visualised results for our SHAP-EDITOR, with each editing
prompt associated with a distinct model, i.e., Ours (Single-
prompt). It is evident that our method is capable of perform-
ing accurate edits across diverse object classes and demon-
strates reasonable generalisation to unseen categories.

Human Avatar Editing. Figure A2 shows additional se-
mantic editing result with human avatars collected from Ob-
javerse [2]. Our SHAP-EDITOR successfully change the
style or transform the character into “Clown”, “Tolkien
Elf” or “Van Gogh”. Although, we can achieve differ-
ent semantic edits on human avatars from Objaverse, the
quality of the 3D assets is still limited by the Shap-E la-
tent space. More research is required for the latter to be
on par with test-time instance optimization, but latent space
editing is the key to computationally practical methods (1 s
inference). Even so, our research shows the potential of this
class of methods for editing.

Scaling up to more prompts. We further explore the pos-
sibility of learning more prompts within one editor model.
We first train a 10-prompt model using the five instruc-
tions included in the original dataset plus extra five prompts:
“Make it look like a statue”, “Make it look like made of
steel”, “Make it look like made of lego”, “Add a party hat
to it”, “Add rollerskates to it”. We also expand the instruc-
tions to train a 20-prompt model (which includes the previ-
ous 10 prompts plus “Make it look like a panda”, “Make it
look like made of bronze”, “Turn it into blue”, “Turn it into
yellow”, “Turn it into pink”, “Turn it into green”, “Turn
it into red”, “Add a snowboard to it”, “Add sunglasses
to it”, “Add a crown to it”). As shown in Fig. A3, the
performance decreases slightly when moving from a single
prompt to more prompts. However, the difference between
10 prompts and 20 prompts is marginal. This indicates the
potential of our SHAP-EDITOR to scale to tens of prompts
and even arbitrary prompts as inputs.



Seen categories Unseen categories

“Made it look like 
made of steel”

“Made it wooden”

“Make it in 
cyberpunk style”

“Make it look like 
made of lego”

“Add a crown 
to it”

“Add a snowboard 
to it”

Figure A1. Additional visualisations. We apply different editing instructions (including both global and local edits) across various
instances, also demonstrating the generalisability of our method to multiple unseen categories.

Original “Turn�him�
into�a�clown”

“Make�him
Van�Gogh”

“Turn�it�into�
a�TolKien�Elf”

Figure A2. Human avatar editing. We apply SHAP-EDITOR for
editing human avatars. Our SHAP-EDITOR successfully change
the style or appearance of the provided avatars.
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Figure A3. Scale up the amount of prompts. We explore the pos-
sibility of learning a single editor function with tens of prompts.
As the amount of prompts increases, the CLIP similarly and CLIP
directional similarity scores decrease. However, both scores reach
a plateau when more prompts are introduced.



D. Additional ablation studies

Network initialisation. We compare the editing results
of SHAP-EDITOR with and without the pre-trained weights
of the text-to-3D Shap-E diffusion network quantitatively
and qualitatively under the multi-prompt setting, i.e., Ours
(Multi-prompt). As shown in Fig. A4, the editor trained
with Shap-E initialisation can successfully generate differ-
ent effects given different prompts. However, if instead we
randomly initialise the network, the editor is unsuccessful,
yielding similar outputs regardless of the prompt. We as-
sume this is because the model initialised with Shap-E pre-
trained weights inherits its partial abilities to understand the
natural language, and the randomly initialised one reaches
a local optimum, ignoring the textual instructions.

Effects of στ . Next, we study the value στ that is used
when noising the source latent to be able to initialise the
editor with the pre-trained weights of the Shap-E diffusion
model. To keep the full information and details of the orig-
inal 3D asset, we follow [1] and concatenate the noised la-
tent with the original latent (στr

s +ατϵ, r
s). Here, στ is a

hyperparameter that controls the information we keep from
the original latent in the noised counterpart. A smaller στ

means we keep less information. The στ value in the main
text corresponds to τ = 200 in the original total 1024 Shap-
E diffusion steps. A higher τ corresponds to a smaller στ ,
and when τ = 1024, the noised input can be considered
as a random Gaussian noise. As illustrated in the Fig. A5,
time steps in the range [200, 600] result in only marginal
differences in performance. A large noise or no noise will
lead to a drop in the CLIP similarity and CLIP directional
similarity scores. Increasing the noise also leads to a larger
Structure Distance.

Choice of cross-attention maps. To accurately estimate
the local editing region, we assess the quality of cross-
attention maps extracted at various timesteps from several
pre-trained 2D models, including InstructPix2Pix [1], Mag-
icBrush [12], and Stable Diffusion v1.5 [5]. As demon-
strated in Fig. A6, most cross-attention maps either fail
to disentangle the region of interest from the main ob-
ject or suffer from excessive background noise. In con-
trast, the cross-attention map extracted from MagicBrush
at t = 600 (indicated by red boxes) effectively highlights
the region associated with the attention word tokens (i.e.,
“hat”, “sweater”). Therefore, we adopt this setting as the
default in our experiments.

E. Extended discussion on prior methods

Our method differs from prior work employing test-time op-
timisation techniques in two main ways: (i) We use a di-
rect, feed-forward approach to function on the 3D (latent)
representation, unlike others that gradually optimise the 3D
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Figure A4. Comparison with different initialisation method.
We use the multi-prompt setting in our experiments. “w/ init.”
denotes initialisation using the pre-trained weights of the Shap-
E text-to-3D diffusion model, and “w/o init.” indicates random
initialisation. With random initialisation, the network loses the
ability to distinguish across different prompts and produces similar
results despite different instructions.
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Figure A5. Ablation study on the timestep τ for στ . We analyse
the level of noise introduced to the input, with a large timestep τ
corresponding to a large noise. As the timestep τ , thereby the
noise level, increases, the Structure Distance rises consistently.
When the input is the original latent (τ = 0) or has very large noise
(τ → 1024), we observe degraded performance in both CLIP sim-
ilarity score and CLIP directional similarity score.

representation at test time to align it with a 2D prior. Our
approach significantly reduces the inference time from tens
of minutes to less than one second; (ii) Our method learns
editing in a simpler, more structured latent space, avoiding
the complexity of spaces like NeRF’s weight matrix space.
This simplification reduces learning difficulty and cost, al-
lowing our model to generalise to novel objects at test time.
Recently, EDNeRF [13] tries to edit NeRFs that are trained
on the latent space of Stable Diffusion [5]. The loss changes
from the image space to the VAE latent space of Stable Dif-
fusion. In this context, the use of the term “latent” is differ-
ent from ours since it still requires NeRF as a representation
of the 3D model and test-time optimisation.

Another key difference in our work is the use of com-
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“Make it wear a blue sweater”

Figure A6. Visualisation of cross-attention maps that corre-
spond to particular attention word tokens (labeled in red). These
maps are extracted at different timesteps (t ∈ [0, 1000]) from
various pre-trained 2D models (including InstructPix2Pix, Mag-
icBrush, and Stable Diffusion v1.5). In this work, we consider the
default cross-attention maps at t = 600 from MagicBrush, which
are indicated by the red boxes.

plementary 2D diffusion priors for the training objectives.
Other methods, such as IN2N [3], Vox-E [10], Instruct
3D-to-3D [7] typically distill knowledge from one net-
work (e.g., Stable Diffusion [5] for Vox-E [1] and Instruct-
Pix2Pix [1] for IN2N and Instruct 3D-to-3D) with different
regularisation due to different 3D representations.

As shown in our ablation studies in the main text, distill-
ing from only one network usually inherits the drawbacks of
the original 2D model, such as the inability to edit locally
or preserve the original appearance and structure. Instead,
one can distill from multiple 2D editors to overcome these
pitfalls and achieve better editing results.

Finally, we also experiment with the training objective of
IN2N, i.e., editing images directly and updating our editor
function with a photometric loss. However, this led to di-
vergence, likely due to the greater inconsistency introduced
by training with multiple instances compared to optimising
a single NeRF.

“add a skateboard to it” Source “add a skateboard to it” Source 

Source “Make�it�wear�a�blue�sweater”���“Add�a�Santa�hat�to�it”���

Figure A7. Failure case. When encountering a new class, such
as “turtle”, which significantly differs from those in the training
dataset, our model struggles to identify the correct position for
local editing.

F. Failure case
In Fig. A7, we present two failure cases. These occur par-
ticularly when the model encounters an unseen class that
significantly differs from the classes the editor was trained
on. This disparity leads to difficulties in accurately deter-
mining the position for local editing, ultimately resulting in
editing failures. We conjecture that such failure cases can be
eliminated by training the editor on an even larger number
of object categories.

G. Ethics
We use the OmniObject3D dataset and Objaverse follow-
ing their terms and conditions. This data contains no per-
sonal data. For further details on ethics, data protection, and
copyright please see https://www.robots.ox.ac.
uk/˜vedaldi/research/union/ethics.html.
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