
SUGAR : Pre-training 3D Visual Representations for Robotics

Supplementary Material

In Section 1, we provide more implementation details
for SUGAR pre-training and downstream adaptation. Then
in Section 2 we present additional quantitative results. We
further perform real robot experiments in Section 3 to demon-
strate the effectiveness of SUGAR pre-training for robotic
manipulation in the real world. Finally, we discuss limita-
tions and future work in Section 4.

1. Implementation Details
1.1. Pre-training

Network details. We set the number of points N = 4096,
the number of key points Ne = 256 and the group size
Se = 32 to obtain the point cloud input tokens. The SUGAR
encoder and decoder contains L = 12 transformer blocks
with hidden size d = 384 and 6 attention heads per block.
Training details. We pre-train two sets of models according
to the pre-training data: ‘SN’ uses objects only in ShapeNet,
and ‘Ens’ uses the ensembled four datasets. For the ‘SN’
model, we train 100K iterations on the single-object dataset
with learning rate 1e-4 and 100K iterations on the multi-
object dataset with learning rate 1e-5 and batch size 128.
For the ‘Ens’ model, we train 300K iterations on the single-
object dataset and 200K iterations on the multi-object dataset
using the same learning rate and batch size as in ‘SN’ models.
The pre-training is performed on one NVIDIA-A100 GPU,
taking 50 hours for the ‘SN’ model and 130 hours for the
‘Ens’ model.

1.2. Referring expression grounding

For the OCID-Ref dataset, we fix the point cloud encoder
and only finetune the prompt-based decoder. We finetune the
model with a batch size of 64 and learning rate of 1e-4 for
20 epochs. For the RoboRefit dataset, we finetune the full
model with a batch size of 16 and learning rate of 4e-5 for 50
epochs. We use the AdamW optimizer with cosine learning
rate scheduler.

1.3. Language-guided robotic manipulation

Experimental setup. Our experimental setup on RL-
Bench [31] 10 tasks is the same as previous works [7, 23].
Specifically, we use three cameras located on the left shoul-
der, right shoulder and wrist of the robot with known camera
intrinsics and extrinsics. Each camera produces an RGB-D
image with image resolution of 128 × 128 at every step. A
merged point cloud can be obtained given the camera param-
eters. Following [7], we only keep points inside the robot’s
workspace by using a fixed bounding box around the table.

We use voxel downsampling to uniformly downsample the
point cloud with 0.5cm grid size. For robotic control, we use
keysteps [7, 23, 45] - key turning points in action trajectories
where the gripper changes its openness state or velocities
of joints are close to zero. The control policy should pre-
dict a position (3D), rotation (4D represented by quaternion)
and openness state (1D) of the gripper for the next keystep.
The default motion planner in RLBench is used to find a
trajectory between two keysteps.
Model details. Figure 1 illustrates the policy network in
detail. We first combine the action prompt embedding yL1
and point embeddings {xL

i }
Ne
i=1 to compute a heatmap over

all the key points, which denotes the importance of the key
points for action prediction. We then average the point em-
beddings and position of key points respectively using the
heatmap. The averaged point embedding is concatenated
with yL1 to regress the position offset relative to the averaged
key point position, a rotation vector and an openness state.
The policy is trained by behavior cloning, with MSE loss for
position and rotation, and BCE loss for openness state.
Training details. We use a batch size of 8 to train the model
for 200K iterations for the 10 RLBench tasks. We adopt
a learning rate of 5e-5 for the model trained from scratch,
while a lower learning rate of 2e-5 for the model initialized
from SUGAR pre-training.

2. Additional Results
Zero-shot object recognition. Though we consider the En-
sembled w/o LVIS setup to be better suited for evaluating
the generalization ability of models, we include results with
LVIS training in Table 1 for complete comparison with
prior work [44]. Training with LVIS split improves perfor-
mance on the LVIS dataset but does not impact much on the
other two datasets. Our model still outperforms the SoTA
method [44] under this setup.
Referring expression grounding. We provide an additional
variant SUGAR (Ens s) in Table 2, which is pre-trained on
single objects of the ensembled dataset. To be noted, we only
initialize the point cloud encoder for SUGAR variants pre-
trained on single objects as we find initializing both encoder
and decoder deteriorates the performance. As the decoder
in single-object pre-training focuses on the overall scene
for cross-modal learning, we hypothesize that the learned
cross-modal attentions can suffer from recognition of local
objects. As shown in Table 2, the single object pre-training
on the ensembled dataset does not benefit the generalization
on unseen cluttered scenes in testB split, demonstrating the
importance of pre-traning on multi-object scenes.



Table 1. Zero-shot object recognition performance with models trained on Ensembled w/ LVIS dataset.

Method ModelNet40
ScanObjectNN Objaverse-LVIS

OBJ ONLY OBJ BG PB T50 RS Top1 Top3 Top5

OpenShape [44] 84.4 54.0 59.1 43.6 46.8 69.1 77.0

SUGAR (single) 84.6 65.3 67.6 49.8 49.5 72.2 78.8
SUGAR (multi) 84.5 64.9 66.8 48.3 46.8 69.7 76.6

Figure 1. Network architecture for language-guided robotic manip-
ulation. The point cloud encoder and prompt based decoder can
be finetuned from SUGAR pre-training. We use two multi-layer
perceptrons modules (MLP) as the action prediction head.

Table 2. Performance of referring expression detection (evaluated
by Acc@0.5) and referring expression segmentation (evaluated by
mIoU) on the RoboRefit dataset.

Method
testA testB

Acc@0.5 mIoU Acc@0.5 mIoU

SUGAR (no pre-train) 87.56 81.31 55.62 57.02
SUGAR (Ens s) 88.11 81.71 52.59 56.57
SUGAR (Ens m) 89.47 82.11 65.04 62.80

Language-guided robotic manipulation. In Table 3, we
include both the averaged success rate and standard devia-
tions for the RLBench 10-task experiment. As the 10 RL-
Bench tasks use objects with simple shapes like cups and
cubes, pre-training on ShapeNet can be sufficient and thus
we do not observe further performance improvement from
pre-training on Ens m. Compared to PolarNet, our model
performs slightly worse on Pick & Lift and Push Button
though it achieves better performance on average. To be

Figure 2. Success rate on RLBench validation split in different
training iterations. We compare the policy trained from scratch and
the model initialized from SUGAR pre-training.

noted, PolarNet employs additional normal and height fea-
tures in the point cloud, while our method omits those for
generalizability in pre-training. As shown in PolarNet, nor-
mal and height features benefit some tasks like “Push Button”
where the main failure cases are that the gripper does not
push down enough to the button. We also notice relatively
large variations on individual tasks, and thus we consider the
averaged performance is more stable for comparison.

In Figure 2, we present the performance on the RLBench
validation split for policies trained from scratch and initial-
ized from SUGAR pre-training. We can see that the policy
can converge much faster and achieve better performance
with the pre-training.

3. Real-world Robotic Manipulation
To evaluate the effectiveness of SUGAR pre-training for
real robots, we further perform real world experiments for
language-guided robotic manipulation.

To be specific, we use a UR5 robotic arm equipped with a
RG6 gripper and set two Intel RealSense D435 RGB-D cam-
eras on the front and lateral sides of the robot’s workspace.
We adopt 5 real-world tasks including stack cup, put fruit
in box, open drawer, put item in cabinet and hang mug as
illustrated in Figure 3. For each task, we collect 20 real-robot
demonstrations, where each demonstration consists of RGB-



Table 3. Averaged success rate of three runs for multi-task policies on 10 tasks of RLBench simulator.

Method Pre-train Avg.
Pick &

Lift
Pick-Up

Cup
Push

Button
Put

Knife
Put

Money
Reach
Target

Slide
Block

Stack
Wine

Take
Money

Take
Umbrella

PolarNet [7] ShapeNetPart 89.8±1.5 97.8±1.4 86.0±2.1 99.6±0.4 80.5±1.1 94.1±0.8 100±0.0 93.4±0.9 80.5±3.6 68.1±4.3 97.8±0.2

SUGAR

- 85.9±3.9 77.7±4.9 92.7±4.2 91.7±0.9 69.4±8.0 87.7±1.2 99.7±0.4 94.3±0.4 83.1±7.8 66.8±9.2 95.7±1.6

SN m 93.0±1.0 93.1±1.3 94.5±1.0 98.9±0.8 85.4±1.4 97.8±1.3 100±0.0 97.9±0.8 94.5±1.5 70.0±1.6 98.4±0.2

Ens m w/o grasp 92.0±1.6 93.1±1.3 93.7±1.3 98.8±1.1 85.5±0.1 92.3±5.3 99.9±0.1 97.3±1.4 93.7±0.6 68.8±4.2 97.2±0.9

Ens m 93.0±1.7 95.8±1.3 95.7±1.6 96.1±5.1 86.5±2.7 94.2±1.6 100±0.0 97.0±0.5 93.5±0.6 72.0±2.9 98.8±0.9

(a) Stack cup. (b) Put fruit in box. (c) Open drawer. (d) Put item in cabinet. (e) Hang mug.

Figure 3. Illustration of the adopted five real robot tasks.

Table 4. Success rate of multi-task policies on 5 real-world tasks.
We evaluate 10 episodes for each task.

no pretrain SUGAR (Ens m)

Stack cup 0/10 10/10
Put fruit in box 0/10 4/10
Open drawer 0/10 3/10
Put item in cabinet 0/10 9/10
Hang mug 0/10 6/10

D images and proprioceptive information of the gripper at
keysteps (typically 3-6 keysteps).

We train a multi-task policy using the collected real-robot
data, and evaluate 10 episodes for each task where the object
locations and distractor objects are different from the training
data. Table 4 presents results of a model trained from scratch
on the real robot data and a model initialized from SUGAR
pre-training. The model trained from scratch overfits on the
limited training data and totally fails in evaluation. As shown
in Figure 4a, the model trained from scratch has serious
problems of localizing the target object. Our SUGAR pre-
training significantly improves the performance for language-
guided manipulation in the real world, leading to an average
of 64% success rate over the five tasks. Figure 4b presents
a successful case of putting lemon in the box. However,
we also notice that the model initialized from SUGAR pre-
training still has problems in precise object localization in
Figure 4c. The problems can result from the sub-optimal
network design that largely downsamples the point cloud,
the regression action prediction head that is more unstable
compared to classification, and the noisy depth sensors. We
will investigate more on the policy networks to improve the

robotic manipulation performance.

4. Limitations and Future Work
This work only adopt a plain transformer architecture for
point cloud encoding, which is computationally expensive.
For example, compared to the SoTA method PolarNet [7],
our model consists of 4.5x more parameters (65M vs. 14M)
and runs 1.3x slower (18h vs. 14h in training on one V100
GPU). This is because PolarNet is based on a UNet back-
bone which is more efficient. Our vanilla transformer-based
backbone alone does not a show clear advantage over the
UNet backbone for robotic manipulation as seen in Table 3,
although the proposed pre-training significantly boosts the
performance. We believe that the proposed pre-training can
benefit other architectures and plan to explore more efficient
3D backbones in our future work.



(a) A failure case of the multi-task policy trained from scratch.

(b) A successful case of the multi-task policy initialized from SUGAR pre-training.

(c) A failure case of the multi-task policy initialized from SUGAR pre-training.

Figure 4. Examples of real world execution on the Put fruit in box task for different policies.


	. Implementation Details
	. Pre-training
	. Referring expression grounding
	. Language-guided robotic manipulation

	. Additional Results
	. Real-world Robotic Manipulation
	. Limitations and Future Work

