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The supplementary material encompasses this PDF file,
offering additional details about our work, a video show-
casing SecondPose predictions frame by frame on the
REAL275 and HouseCat6D test set, and a ZIP file contain-
ing the SecondPose code for reproducibility.

1. Implementation Details

Our network is implemented on Pytorch 1.13. The back-
bone is based on VI-Net [4]. To obtain DINOv2 features,
we initially crop the object by its bounding boxes from the
original image and subsequently resize it to a resolution of
210 x 210. The DINOv2 model version employed is ’di-
nov2_vits14’, with a set stride of 14. Consequently, the res-
olution of the output DINOv2 feature is 15 x 15. We ran-
domly select 100 points from the feature map as our sam-
pled points with DINOv2 features.

For extracting geometric features, we initially ran-
domly sample 300 points from the entire point cloud.
These points serve as the basis for estimating point-wise
normal vectors. To create the hierarchical panels, we
then choose range parameters (ko, k1, ko, k3, k4, ks, k) =
(0,10, 20,40, 80, 160, 299).

See Tab | for an overview of the number of trainable
parameters and frozen parameters of our method and VI-
Net.

Number of Parameters  Trainable Frozen
VI-Net 27,311,368 0
Ours 33,639,561 22,056,576

Table 1. Parameter Count

2. Further Explanations of the Pipeline

Invariance vs Equivariance. Following VI-Net [4], our
backbone ensures that, when the input point-wise features
are approximately SE(3)-invariant, the output feature map is
approximately SE(3)-equivariant. We used the term “SE(3)-
invariant” to emphasize that our input features are invariant.
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Figure 1. Feature Fusion We illustrate fusion process with anno-
tated approximately equivalent and approximately invariant fea-
tures.
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The process of feature fusion is illustrated in the Figure 1
below, the RGB values F, the DINOv2 features F, and
the HP-PPF features F|, are our invariant input features.

1) All input features are approximately invariant: the ge-
ometric features and RGB values are inherently invari-
ant. The DINOV2 features are approximately invariant due
to their training on a large-scale dataset, ensuring consis-
tent semantic representation. This consistency in semantic
meaning, regardless of rotation/translation, implies SE(3)
consistency, thus leading to approximate SE(3) invariance.
2) The output is equivariant: similar to VI-Net, our back-
bone transforms point-wise features with the point cloud’s
3D coordinates into a 2D feature map. These maps are then
processed by ResNets that approximately maintain SE(3)
equivariance (see section 3.4 and [4] for details). Conse-
quently, when the input features are approximately SE(3)
invariant, the output 2D feature map is approximately SE(3)
equivariant.

Visualization of Feature Maps. In Fig 2, we visualize
the features of same object in two frames, each with a dif-
ferent pose.

“RGB”, “DINOv2”, “HP-PPF” depict our input features,
which are roughly SE(3) invariant. “Second(2D)” repre-
sents our post-fusion feature map, utilized for pose estima-
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Figure 2. Feature Maps We fuse features of RGB, DINOv2
and HP-PPF intoo a 2D feature map that is approximately SE(3)-
equivariant.

tion and approximately SE(3) equivariant; we observe slight
shifts in the feature map pattern upon rotation and trans-
lation. For visualization, we also present “Second(PC)”,
a point-wise feature obtained by projecting “Second(2D)”
back onto the point cloud, using the pixel-point correspon-
dence, and it’s also approximately invariant.

Shape of All Feature Maps and Other Intermedi-
ate Representation. Fig | illustrates our input features
as: F. € R"S3, F, € R"™¢%, and F;, € R"*%,
while after modules %, .Z,, %5, our features have shape
RHEXWxe and after fusion module %} the feature is of
shape RHxWxe,

3. More Experimental Results on HouseCat6D

We report more metrics on HouseCat6D [3] in Table 2.
We note that our approach outperforms other methods by
a significant margin across all metrics. Especially on the
restricted metrics IoUr5 and 5° 2 cm, SecondPose outper-
forms VI-Net by 22.1% and 31.0% respectively.

We present the categorical results of our experiment on
HouseCat6D in Fig. 5. Our method exhibits a substan-
tial performance advantage over VI-Net in categories such
as box, can, cup, remote, teapot, and shoe. However, in
other categories, namely bottle, cutlery, glass, and tube, our
method shows a slightly lower performance compared to
VI-Net. We noted a shared characteristic among these cate-
gories—items within them typically display either high re-
flectivity or high transparency. Under optical conditions of
this nature, DINOvV2 tends to encounter difficulties in ex-
tracting meaningful semantic information.

4. Failure Cases and Limitations

We present typical failure cases in both REAL275 and
HouseCat6D.

The failure cases of HouseCat6D are presented in Fig. 3.
There are four common failure types. (A) highlights in-
stances involving transparent items where DINOv2 strug-
gles to extract meaningful semantic features, leading to
poorer performance on transparent items. (B) illustrates a
self-occlusion scenario, complicating pose prediction due
to obscured essential features like the mug handle, crucial
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Figure 3. Failure cases in HouseCat6D. We illustrate com-
mon failure scenarios on HouseCat6D. (A) depicts instances of
transparent items; (B) showcases items with pronounced self-
occlusion; (C) the tube represents items with high reflectivity; (D)
illustrates failures attributed to atypical shapes.
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Figure 4. Failure cases in REAL275. We illustrate common fail-
ure scenarios on HouseCat6D. (A) represents failure due to wrong
instance segmentation; (B)-(D) illustrates failures due to wrong
prediction of the y-axis.

for object identification and orientation. In (C), the tube
represents items with high reflectivity, a condition often as-
sociated with DINOv2 failures. (D) illustrates failures at-
tributed to atypical shapes.

The failure cases of REAL275 are presented in Fig. 4.
(A) signifies failures arising from false positive detection
results. Meanwhile, (B)-(D) illustrate errors related to the
wrong orientation prediction of the z-axis, where we ob-
served that on REAL275, our model tends to predict the
y-axis accurately.

In summary, there are four primary typical failure scenar-
ios: Firstly, instances where DINOv2 fails to extract mean-
ingful semantic information under specific optical condi-
tions such as high reflectivity or high transparency. Sec-
ondly, when severe occlusions are present. Thirdly, when
the item displays an atypical shape. Finally, errors are
caused by the exclusive parts out of our pipeline, such as
the detection frontend.



HouseCat6D

Method IoUzs 5°2c¢m 5°5cem  10°2cm  10°5cm
FS-Net [1] 14.8 33 42 17.1 21.6
GPV-Pose [2] 152 35 46 17.8 227
VI-Net [4] 20.4 8.4 103 20.5 29.1
SecondPose (Ours) 24.9 11.0 134 253 35.7

Table 2. Quantitative comparisons of different methods for category-level 6D object pose estimation on HouseCat6D [3].
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Figure 5. Categorical results on HouseCat6D. We visualize the comparison of our IoUss and IoUsq results on HouseCat6D with those

of VI-Net.
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