A. Implementation Details

3D Gaussian Splatting Details. Instead of directly using the
official 3D Gaussian Splatting code provided by Kerbl et al.
[6], we reimplement this algorithm by ourselves due to the
need to support learnable MLP background. The official 3D
Gaussian Splatting implementation propagates the gradients
of the Gaussians in an inverse order, i.e., the Gaussians
rendered last get gradient first. Our implementation follows
a plenoxel [17] style back propagation that calculates the
gradient in the rendering order, which we found much easier
to incorporate a per-pixel background.

The depth maps are rendered using the view-space depth
of the centers of the Gaussians, which we claim is accurate
enough due to the tiny scale of the Gaussians [19]. Besides,
we implement a z-variance renderer to support z-var loss pro-
posed by [18]. However, we found that z-var loss seems to
have a limited impact on the generated 3D asset, mainly due
to the sparsity of Gaussians naturally enforcing a relatively
thin surface. During rendering and optimizing, we follow
the original 3D Gaussian Splatting to clamp the opacity of
the Gaussians into [0.004,0.99] to ensure a stable gradient
and prevent potential overflows or underflows.

Guidance Details. All the guidance of 2D image dif-
fusion models we used in this paper is provided by hug-
gingface diffusers [14]. For StableDiffusion guidance, we
opt for the runwaymli/stable-diffusion-vI-5 checkpoint for
all the experiments conducted in this paper. We also test
the performance of GSGEN under other checkpoints, includ-
ing stabilityai/stable-diffusion-2-base and stabilityai/stable-
diffusion-2-1-base, but no improvements are observed.

For Point-E diffusion model and its checkpoints, we di-
rectly adopted their official implementation.

Training Details. All the assets we demonstrate in this
paper and the supplemental video are trained on a single
NVIDIA 3090 GPU with a batch size of 4 and take about
40 minutes to optimize for one prompt. The 3D assets we
showcase in this paper and supplemental video are obtained
under the same hyper-parameter setting since we found our
parameters robust toward the input prompt. The number of
Gaussians after densification is around [1€, 1e°].

Open-Sourced Resources and Corresponding Licenses.
We summarize open-sourced code and resources with corre-
sponding licenses used in our experiments in the following
table.

We use Stable DreamFusion and threestudio to obtain
the results of DreamFusion, Magic3D, and ProlificDreamer
under StableDiffusion and on the prompts that are not in-
cluded in their papers and project pages since the original
implementation has not been open-sourced due to the usage
of private diffusion models. The results of Fatansia3D are
obtained by running their official implementation with their
parameter setting for dog-like shapes.

Table 1. Open-sourced resources used in the experiment.

Resource License
Stable DreamFusion [13] Apache License 2.0
Fantasia3D [2] Apache License 2.0
threestudio [5] Apache License 2.0
StableDiffusion [11] MIT License
DeepFloyd IF [1] DeepFloyd IF License
HuggingFace Diffusers Apache License 2.0
OpenAl Point-E [9] MIT License

ULIP [15, 16] BSD 3-Clause License

B. Additional Results
B.1. User-Guided Generation

Initialization is straightforward for 3D Gaussian Splatting
due to its explicit nature, thereby automatically supporting
user-guided generation. We evaluate the proposed GSGEN
on user-guided generation with shapes provided in Latent-
NeREF [8]. In this experiment, the initial points are generated
by uniformly sampling points on the mesh surface. To bet-
ter preserve the user’s desired shape, we opt for a relatively
small learning rate for positions. We compare the 3D content
generated by GSGEN with that generated by the state-of-the-
art user-guided generation methods, Latent-NeRF [8] and
Fantasia3D [2], as shown in Fig. 1. Our proposed GSGEN
achieves the best results among all alternatives in both ge-
ometry and textures and mostly keeps the geometrical prior
given by the users.

Latent-NeRF
Latent-NeRF

Fantasia3D

Ours

Figure 1. Qualitative comparison results on user-guided generation.
The prompts from left to right are (1) A German Shepherd; (2) A
robot hand, realistic; (3) A teddy bear in a tuxedo, (4) a lego man;
(5) a house made of lego.


https://github.com/ashawkey/stable-dreamfusion
https://fantasia3d.github.io/
https://github.com/threestudio-project/threestudio
https://github.com/Stability-AI/stablediffusion
https://www.deepfloyd.ai/
https://github.com/huggingface/diffusers
https://github.com/openai/point-e
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Figure 3. Comparison between Point-E generated point clouds and
GSGEN generated 3D assets.

B.2. More Text-To-3D Results

a panda

We present more general text-to-3D generation results of
GSGEN in Fig. 8 and Fig. 9. Our approach can generate 3D
assets with accurate geometry and improved fidelity.

For more delicate assets generated with GSGEN and the

corresponding videos, please watch our supplemental video.

B.3. More Qualitative Comparisons

In addition to the qualitative comparison in the main text,
we provide more comparisons with DreamFusion [10] in
Fig. 10 and Fig. 11, Magic3D [7] in Fig. 12, Fantasia3D
[2] and LatentNeRF [8] in Fig. 13. In order to make a fair
comparison, the images of these methods are directly copied
from their papers or project pages. Video comparisons are
presented in the supplemental video.

Point-E guidance ULIP guidance

Figure 4. Point clouds optimized under Point-E and ULIP. Prompt:
A corgi

B.4. More Experiments
B.4.1 Color Initialization

As illustrated in the main text, GSGEN adopts random color
initialization instead of directly applying Point-E generated
colors. Fig. 2 demonstrates the detrimental effect of direct
utilization of Point-E generated texture.

B.4.2 3D Point Cloud Guidance

GSGEN under ULIP guidance

Figure 5. Text-to-3D generation qualitative comparison with 3D
prior as Point-E or ULIP. Prompt: A DSLR photo of an ice cream
sundae.

Our empirical results demonstrate that GSGEN consis-
tently delivers high performance, even in scenarios where
Point-E operates sub-optimally. As illustrated in Fig. 3, we
showcase point clouds generated by Point-E alongside the
corresponding 3D assets created by GSGEN. Our approach
demonstrates great performance when Point-E provides only
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A hi . .
() A high quality photo of an ostrich ved on top, blue on bottom

(b) A small red cube is sitting on top of a large blue cube.

(¢) a zoomed out DSLR photo of a few pool balls sitting
on a pool table

Figure 6. Several typical failure cases of GSGEN.

Figure 7. Prompts that StableDiffusion cannot correctly process, which leads to the failure of corresponding text-to-3D generation.

rough guidance. We attribute this to direct 3D prior provided
by Point-E assisting in geometrical consistency by correcting
major shape deviations in the early stage, without the need
to guide fine-grained geometric details.

Except for the Point-E [9] used in our proposed GSGEN,
we also test a CLIP-like point cloud understanding model
ULIP [15, 16]. While achieving superior performance in
zero-shot point cloud classification, ULIP seems ineffective
in the context of generation. Fig. 4 demonstrates point clouds
generated under the guidance of ULIP and Point-E. Point-E
can guide the point cloud to a consistent rough shape with
SDS loss while the inner-product similarity provided by
ULIP leads to a mess. We substitute the 3D prior in GSGEN
from Point-E to ULIP in Fig. 5, yielding similar results to
point cloud optimization.

B.4.3 2D Image Guidance

Except for StableDiffusion, we also test the performance
of GSGEN under the guidance of DeepFloyd IF, another
open-sourced cutting-edge text-to-image diffusion model.
Compared to StableDiffusion, DeepFloyd IF has an Imagen-
like architecture and a much more powerful text encoder.
We demonstrate the qualitative comparison between GS-
GEN under different guidance in Fig. 14. Obviously, assets
generated with DeepFloyd IF have a much better text-3D
alignment, which is primarily attributed to the stronger text
understanding provided by T-5 encoder than that of CLIP
text encoder. However, due to the modular cascaded design,
the input to DeepFloyd IF has to be downsampled to 64 x 64,
which may result in a blurry appearance compared to those
generated under StableDiffusion.

Our concurrent work MVDream [12] proposes to fine-
tune StableDiffusion with 3D aware components on Obja-
verse [3, 4] to enhance multi-view consistency and alleviate
the Janus problem. We also test the performance of GS-
GEN under MVDream. As shown in Fig. 15, MVDream
significantly contributes to multi-view consistency, resulting
in more accurate geometry and complete 3D assets (such
as more complete panda and Janus-free ostrich). Although
alleviating the Janus problem, we empirically find that M'V-
Dream demonstrates sub-optimal performance towards com-
plex prompts, as shown in Fig. 16. 3D assets generated with
MVDream tend to ignore some parts of the prompt compared
to those under StableDiffusion guidance, e.g. the moss on
the suit, the vines on the car, and the chicken and waffles on
the plate. This demonstrates that introducing 3D prior while
retaining the information from the original diffusion model
presents a challenging problem, and we consider this issue
as our future research.

C. Failure Cases

Despite the introduction of direct 3D prior, we could not
completely eliminate the Janus problem, attributed to the
ill-posed nature of text-to-3D generation through a 2D prior
and the limited capability of the 3D prior we employed.

Fig. 6 showcases several typical failure cases we encoun-
tered in our experiments. In Fig. 6a, the geometrical struc-
ture is correctly established, but the Janus problem happens
on the appearance (another ostrich head on the back head).
Fig. 6b and Fig. 6¢c demonstrates another failure case caused
by the limited language understanding of the guidance model.
StableDiffusion also fails to generate reasonable images with
these prompts, as illustrated in Fig. 7.
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A zoomed out DSLR photo of a plate of fried chicken and waffles with
maple syrup on them

A DSLR photo of a plush triceratops toy, studio lighting, hight resolu-
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Figure 8. More 3D assets generated with GSGEN.



A tarantula, highly detailed
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A high quality photo of a kangaroo A high quality photo of a furry rabbit
Figure 9. More 3D assets generated with GSGEN.



DreamFusion GSGEN
A DSLR photo of pyramid shaped burrito with a slice cut out of it
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DreamFusion GSGEN
A DSLR photo of a roast turkey on a platter

DreamFusion GSGEN

DreamFusion
A zoomed out DSLR photo of a brain in a jar

DreamFusion GSGEN
A zoomed out DSLR photo of a cake in the shape of a train

Figure 10. More comparison results with DreamFusion.



DreamFusion GSGEN
A zoomed out DSLR photo of an amigurumi motorcycle

DreamFusion GSGEN

DreamFusion GSGEN
A zoomed out DSLR photo of a baby dragon
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DreamFusion GSGEN
A zoomed out DSLR photo of a beautiful suit made out of moss, on a mannequin. Studio lighting, high quality, high resolution
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DreamFusion GSGEN
A zoomed out DSLR photo of a complex movement from an expensive watch with many shiny gears, sitting on a table

Figure 11. More comparison results with DreamFusion.



Magic3D A GSGEN
A zoomed out DSLR photo of a plate piled high with chocolate chip cookies

Magic3D
A DSLR photo of a tarantula, highly detailed

Magic3D | GSGEN
A zoomed out DSLR photo of a beautifully carved wooden knight chess piece

Figure 12. More comparison results with Magic3D.



Fantasia3D GSGEN
A fresh cinnamon roll covered in glaze, high resolution

GSGEN

LatentNeRF GSGEN
A photo of a vase with sunflowers

LatentNeRF

A house made of lego

Figure 13. More comparison results with LatentNeRF and Fantasia3D.



GSGEN with StableDiffusion GSGEN with DeepFloyd IF

&
A DSLR photo of a very beautiful tiny human heart organic sculpture made of copper wire and threaded pipes, very intricate,

curved, Studio lighting, high resolution

A DSLR photo of a very beautiful small organic sculpture made of fine clockwork and gears with tiny ruby bearings, very
intricate, caved, curved. Studio lighting, High resolution

An anthropomorphic tomato eating another tomato

Figure 14. Qualitative comparison of GSGEN under StableDiffusion guidance and DeepFloyd IF guidance.
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A DSLR photo of a panda A DSLR photo of an ostrich A beautiful suit made out of feather

Figure 15. 3D assets generated under the guidance of our concurrent work MVDream [12]. MVDream helps generate more accurate
geometry and alleviate the Janus problem, e.g. more complete panda and suit, and the Janus-free ostrich.

MVDream GSGEN

1 [

A zoomed out DSLR photo of a plate of fried chicken and Vwafﬂes with maple syrup on them

Figure 16. Qualitative comparison of MVDream and GSGEN with StableDiffusion on complex prompts.
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