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A. Workflow of FEAL

The detailed workflow of FEAL is summarized in Alg. 2.

Algorithm 2 Workflow of FEAL

Input: global model θ, local models {θk}Kk=1, unlabeled sets
{Uk}Kk=1, annotation budget {Bk}Kk=1, active learning rounds
R, aggregation weights {αk}Kk=1, communication rounds T

Output: trained global model θ∗

/* 1st AL round */
1: for k = 1 to K do
2: Randomly annotateBk samples fromUk to constructL1

k =
{(xi,yi}

Bk
i=1 and update U1

k = Uk \ L1
k.

3: {αk}Kk=1 ←
{|L1

k|}
K
k=1∑K

k=1
|L1

k
|

4: end for
5: θ∗ ← θ
6: for t = 1 to T do
7: for k = 1 to K do
8: θ1

k ← θ∗

9: θ1
k ← LocalTraining(θ1

k, L
1
k)

10: end for
11: θ∗ ← FedAvg({θ1

k}Kk=1, {αk}Kk=1)
12: end for

/* 2nd ∼ R-th AL round */
13: for r = 2 to R do
14: for k = 1 to K do
15: Qr

k = FEAL(θ∗,θr−1
k , Ur−1

k ) ▷ Local data annotation
16: Lr

k = Lr−1
k ∪Qr

k, Ur
k = Ur−1

k \Qr
k

17: {αk}Kk=1 ←
{|Lr

k|}
K
k=1∑K

k=1
|Lr

k
|

18: end for
19: for t = 1 to T do
20: for k = 1 to K do
21: θr

k ← θ∗ ▷ Model distribution
22: θr

k ← LocalTraining(θr
k, L

r
k) ▷ Local training

23: end for
24: θ∗ ← FedAvg({θr

k}Kk=1, {αk}Kk=1})▷ Model aggregation
25: end for
26: end for
27: return θ∗

The sampling strategy employed by FEAL and the ag-
gregation method utilized in FedAvg are detailed in Alg. 3
and Alg. 4, respectively.

Algorithm 3 Sampling strategy of FEAL

Input: global model θ∗, local model θr−1
k , unlabeled set Ur−1

k ,
annotation budget Bk

Output: query set Qr
k

1: for all x ∈ Ur−1
k do

2: Compute Uale(x,θ
r−1
k ) and Uale(x,θ

∗) using Eq. 3.
3: Compute Uepi(x,θ

∗) using Eq. 4.
4: Compute U(x,θ∗,θr−1

k ) by Eq. 5.
5: end for
6: Determine the query set Qr

k according to Alg. 1.
7: return Qr

k

Algorithm 4 Aggregation method of FedAvg

Input: local models {θr
k}Kk=1, aggregation weights {αk}Kk=1

Output: global model θ∗

1: θ∗ ←
∑K

k=1 αk · θr
k

2: return θ∗

B. Derivations
B.1. Dirichlet-based Evidential Model in FAL

In Dirichlet-based evidential models, given a sample x and
a model θ, the categorical prediction ρ follows a Dirichlet
distribution, denoted as p(ρ|x,θ) ∼ Dir(ρ|α). The prob-
ability density function of ρ [28, 37], conditioned on x and
θ, is formulated as:

p(ρ|x,θ) =


Γ(

∑C
c=1 αc)∏C

c=1 Γ(αc)

C∏
c=1

ραc−1
c , (ρ ∈ ∆C)

0 , (otherwise)

(10)

where α = {α1, α2, · · · , αC} denotes the parameters of
the Dirichlet distribution for sample x, Γ(·) is the Gamma
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function, and ∆C = {ρ|
∑C

c=1 ρc = 1 and 0 < ρc < 1} is
the C-dimensional unit simplex.

As stated in [22], the marginal distributions of the
Dirichlet distribution follow Beta distributions. Conse-
quently, given p(ρ|x,θ) ∼ Dir(ρ|α), we can express
p(ρc|x,θ) ∼ Beta(ρc|αc, S − αc), where S =

∑C
c=1 αc

represents the Dirichlet strength. The probability density
function of ρc, given x and θ, is formulated as:

p(ρc|x,θ) =
1

B(αc, S − αc)
ραc−1
c (1− ρc)S−αc−1, (11)

where B(·, ·) is the Beta function and B(αc, S − αc) =
Γ(αc)·Γ(S−αc)
Γ(αc+S−αc)

= Γ(αc)·Γ(S−αc)
Γ(S) .

Combining Eq. 10 and Eq. 11, the posterior probability
for class c, given x and θ, can be obtained as:

P (y = c|x,θ) =
∫
p(y = c|ρ) · p(ρ|x,θ) dρ

=

∫
ρc · p(ρ|x,θ) dρ

=

∫
ρc · p(ρc|x,θ) dρc

=
B(αc + 1, S − αc)

B(αc, S − αc)

∫
ραc
c (1− ρc)S−αc−1

B(αc + 1, S − αc)
dρc

=
B(αc + 1, S − αc)

B(αc, S − αc)

=
Γ(αc + 1) · Γ(S)
Γ(S + 1) · Γ(αc)

=
αc

S
.

(12)
The Dirichlet distribution parameter α is closely linked

to the evidence e which reflects the support for the model
prediction on the given sample x [28]. The parameter α is
formulated as:

α = e+ 1 = A(f(x,θ)) + 1, (13)

where f(x,θ) denotes the output logits of model θ for
sample x and A(·) is a non-negative activation function
to transform the logits f(x,θ) into evidence e. There are
several common activation functions A(·) [25], including:
ReLU(·) = max(0, ·), SoftP lus(·) = log(1 + exp(·)),
and exp(·). In our study, ReLU(·) was employed as the
non-negative activation function.

B.2. Calibrated Evidential Sampling

Aleatoric uncertainty. Given a sample x and the global
model θ, the expected entropy of all possible predictions is
utilized to depict the aleatoric uncertainty, quantifying the
inherent complexity or ambiguity present in sample x. The
aleatoric uncertainty of the sample x in the gloabl model θ

is formulated as:

Uale(x,θ) = Ep(ρ|x,θ)[H[P (y|ρ)]]

= −
C∑

c=1

Ep(ρ|x,θ)[ρc · log ρc]

= −
C∑

c=1

Ep(ρc|x,θ)[ρc · log ρc]

= −
C∑

c=1

∫
log(ρc) ·

ραc
c (1− ρc)S−αc−1

B(αc, S−αc)
dρc

= −
C∑

c=1

B(αc+1, S−αc)

B(αc, S−αc)

∫
log(ρc) ·

ραc
c (1− ρc)S−αc−1

B(αc+1, S−αc)
dρc

= −
C∑

c=1

Γ(αc + 1) · Γ(S)
Γ(S + 1) · Γ(αc)

Eρc∼Beta(ρc|αc+1,S−αc)[log ρc]

=

C∑
c=1

αc

S
· [ψ(S + 1)− ψ(αc + 1)],

(14)
where H(·) denotes the Shannon entropy [29] and ψ(·) rep-
resents the digamma function. The aleatoric uncertainty of
the sample x in the local model θk can also be calculated
as Uale(x,θk) according to Eq. 14.

Epistemic uncertainty. The differential entropy of a
Dirichlet distribution is employed to quantify the inherent
randomness in categorical distributions [21]. This metric is
beneficial in depicting epistemic uncertainty, which arises
due to the global model’s lack of knowledge, often caused
by domain shifts. Given a sample x and the global model
θ, the epistemic uncertainty is defined as:

Uepi(x,θ) = H[p(ρ|x,θ)]

= −
∫
p(ρ|x,θ) log p(ρ|x,θ) dρ

=

C∑
c=1

log
Γ(αc)

Γ(S)
− (αc − 1) · [ψ(αc)− ψ(S)].

(15)

B.3. Evidential Model Training

Task loss for classification. Dirichlet-based evidential
models treat the prediction of a sample as a distribution,
allowing for multiple potential predictions to occur with
specific probabilities. Taking into account all potential pre-
dictions for a sample, we employ the Bayes risk of cross-
entropy loss [28] as the task loss for classification. Given
an input pair (x,y), the task loss for classification is de-



rived as follows:

Ltask(x,θk,y) = Ep(ρ|x,θk)[LCE(x,θk,y)]

=

∫
[

C∑
c=1

−yc log(ρc)] · p(ρ|x,θk) dρ

= −
C∑

c=1

yc

∫
log(ρc) · p(ρc|x,θk) dρc

= −
C∑

c=1

yc · Eρc∼Beta(ρc|αc,S−αc)[log ρc]

=

C∑
c=1

yc · [ψ(S)− ψ(αc)].

(16)

Task loss for segmentation. We leverage the Bayes risk
of Dice loss as the task loss for segmentation following [17].
Given an input pair (x,y), the task loss for segmentation is
denoted as follows:

Ltask(x,θk,y) = Ep(ρ|x,θk)[LDice(x,θk,y)]

= Ep(ρ|x,θk)[1−
2

C

C∑
c=1

∥yc ◦ ρc∥1
∥y2

c∥1+∥ρ2
c∥1

]

= Ep(ρ|x,θk)[1−
2

C

C∑
c=1

∑M
m=1 ymc · ρmc∑M

m=1(y
2
mc + ρ2mc)

]

= 1− 2

C

C∑
c=1

∑M
m=1 ymc · E[ρmc]∑M

m=1(y
2
mc + E[ρ2mc])

,

(17)
where ◦ is the Hadamard product and the image x is com-
prised of M pixels. ymc and ρmc represent the label indi-
cator and categorical probability of pixel xm w.r.t. class c,
respectively. By using the following equation:

E[ρ2mc] = E[ρmc]
2 + Var(ρmc), (18)

Eq. 17 can be updated to:

Ltask(x,θk,y) = 1− 2

C

C∑
c=1

∑M
m=1 ymc · ρmc∑M

m=1[y
2
mc + ρ2mc +

ρmc(1−ρmc)

Sm+1
]

= 1− 2

C

C∑
c=1

∥yc ◦ ρc∥1
∥y2

c∥1 + ∥ρ
2
c∥1 + ∥

ρc◦(1−ρc)

S+1
∥
1

.

(19)

C. Experiments
C.1. Experimental Settings

Datasets. We verified the effectiveness of FEAL across
five real-world medical image datasets, two for classifica-
tion and three for segmentation. Detailed information, in-
cluding the data source, the number of samples, and the
resolution of each sample, is summarized in Tab. 5. Illus-
trative samples from each data source within the five multi-
center medical image datasets are showcased in Fig. 8. Note

Dataset Data source # Train # Test Resolution

Fed-ISIC

Client 1: BCN [23] 9,930 2,483

224×224
Client 2: HAM vidir molemax [23] 3,163 791
Client 3: HAM vidir modern [23] 2,691 672
Client 4: HAM rosendahl [23] 1,807 452

Fed-Camelyon

Client 1: Camelyon17 [2] 47,548 11,888

96×96
Client 2: Camelyon17 [2] 27,923 6,981
Client 3: Camelyon17 [2] 68,043 17,011
Client 4: Camelyon17 [2] 103,870 25,968
Client 5: Camelyon17 [2] 117,377 29,345

Fed-Polyp

Client 1: Kvasir [11] 800 200

384×384
Client 2: ETIS [30] 157 39
Client 3: ColonDB [32] 304 75
Client 4: ClinicDB [3] 490 122

Fed-Prostate

Client 1: BIDMC [19] 225 36

384×384

Client 2: BMC [4] 306 78
Client 3: HK [19] 134 24
Client 4: I2CVB [16] 387 81
Client 5: RUNMC [4] 337 84
Client 6: UCL [19] 152 23

Fed-Fundus

Client 1: Drishti-GS [31] 81 20

384×384
Client 2: RIM-ONE-r3 [8] 128 31
Client 3: REFUGE [24] 320 80
Client 4: REFUGE [24] 320 80

Table 5. Details of multi-center datasets utilized in our study.

Client 1 Client 2 Client 3 Client 4
(e) Fed-Fundus

Client 1 Client 2 Client 3 Client 4
(c) Fed-Polyp

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6
(d) Fed-Prostate

Client 1 Client 2 Client 3 Client 4
(a) Fed-ISIC

Client 1 Client 2 Client 3 Client 4 Client 5
(b) Fed-Camelyon

Figure 8. Illustrative samples from each data source within five
multi-center medical image datasets utilized in our study.

that the Camelyon17 [2] dataset comprises five distinct data
sources with varying stains, therefore, we partitioned them
into five subsets to construct the Fed-Camelyon dataset
within the FAL framework. Similarly, the REFUGE [24]
dataset contains data from two separate sources, each
of which was treated as an individual client within the
Fed-Fundus dataset. For the three segmentation datasets,



we followed [34] to resize the images and ground truth
to 384×384 pixels. In the training phase, we imple-
mented data augmentation by randomly cropping patches of
320×320 pixels. Subsequently, we evaluated the segmenta-
tion results on the entire image of 384 × 384 pixels during
the inference phase.

Evaluation metrics. For classification tasks, we assessed
the Balanced Multi-class Accuracy (BMA) for skin lesion
classification [6] and measured accuracy (ACC) for breast
cancer histology classification. Regarding segmentation
tasks, we used the Dice score and the 95% Hausdorff Dis-
tance (HD95) to assess segmentation results.

Implemental details. We conducted R = 5 rounds of
FAL involving federated model training and data annota-
tion. Federated model training comprises local training
and model communication. During local training, we fol-
lowed the previous work [12, 34, 36] to utilize EfficientNet-
B0 [33] for the Fed-ISIC dataset, DenseNet-121 [9] for the
Fed-Camelyon dataset, and U-Net [20, 26] for segmentation
datasets. Notably, both EfficientNet-B0 and DenseNet-121
were pre-trained on ImageNet [7]. In FEAL, we employed
the ReLU(·) activation as the non-negative activation func-
tion A(·) for both global and local models. We trained lo-
cal models using the Adam optimizer [14] with a learning
rate of 5e−4. The weight decay was set to 5e−4 for the
Fed-ISIC dataset and 1e−5 for the other four datasets. In
terms of communication, we employed the FedAvg algo-
rithm [15], with all clients participating in each communi-
cation round. We conducted T = 100 rounds of commu-
nication to attain a robust global model. Regarding data
annotation, we followed the previous work [5, 13] to a uni-
form annotation budgetBk across all local clients k. Specif-
ically, annotation budgetBk is allocated based on the size of
each dataset. The annotation budget Bk was set to 500 for
both Fed-ISIC and Fed-Camelyon datasets, 50 for the Fed-
Polyp dataset, and 20 for both Fed-Prostate and Fed-Fundus
datasets. Furthermore, to account for the different sizes of
datasets among local clients, we established a maximum an-
notation ratio of 85%. It means that the clients whose num-
ber of labeled samples achieves the threshold ceased further
data annotation. All the experiments were conducted three
times using different random seeds, and the average results
were reported.

Comparison methods. We compared FEAL with eight
state-of-the-art FAL approaches, including random sam-
pling (Random), entropy-based sampling (Entropy) [29],
TOD [10], Gradnorm [35], CoreSet [27], BADGE [1],
LoGo [13], and KAFAL [5]. The first six methods are
designed for standard active learning, whereas LoGo and
KAFAL are specifically tailored for federated scenarios.

For a comprehensive comparison, we implemented the first
six sampling strategies in three distinct manners: (1) uti-
lizing the global model for data evaluation (denoted as G),
(2) employing the local model for data evaluation (L), and
(3) integrating an ensemble technique that harnesses both
global and local models for evaluation (E). The details of
comparison methods and ensemble techniques are summa-
rized as follows.

• Random: Randomly select Bk unlabeled samples for lo-
cal client k in each FAL round.

• Entropy: Entropy is an uncertainty-based sampling strat-
egy, which prioritizes the top-Bk unlabeled samples with
the highest entropy scores in model predictions. Beyond
just utilizing the global or local model for data evaluation,
we also implemented a simple ensemble strategy that ag-
gregates the entropy scores in both models.

• TOD: TOD is an uncertainty-based sampling strategy,
which leverages the temporal output discrepancy to quan-
tify the uncertainty of unlabeled samples. It selects the
top-Bk unlabeled samples with the highest cyclic output
discrepancy (COD) scores. In our implementation, we
incorporated an additional ensemble technique [13], fine-
tuning, into TOD. Specifically, local client k downloads
the global model θr and fine-tunes it with the available
labeled samples. Subsequently, local client k employs
both the fine-tuned global model and its historical local
model θr−1

k to compute the COD score, thereby integrat-
ing insights from both global and local models for more
effective sampling.

• Gradnorm: Gradnorm initially estimates the pseudo loss
of unlabeled samples, leveraging either pseudo labels or
entropy scores derived from model predictions. This loss
estimation is then backpropagated to determine the gradi-
ent norm across all model parameters, serving as a mea-
sure of data uncertainty to evaluate the potential value of
each unlabeled sample. In our study, we aggregated the
gradient norm from both models to achieve a fundamental
ensemble setting. This approach enabled us to leverage
the knowledge of both global and local models, thereby
facilitating a more comprehensive evaluation.

• CoreSet: CoreSet is a diversity-based sampling strategy
that identifies and selectsBK unlabeled samples with fea-
ture embeddings exhibiting the greatest dissimilarity to
available labeled samples. In a basic ensemble setting,
we averaged the feature embeddings from both global and
local models for each sample and applied CoreSet on the
interpolated feature embedding.

• BADGE: BADGE is a hybrid sampling strategy that si-
multaneously considers uncertainty and diversity metrics.
It begins by extracting gradient embeddings of unlabeled
samples to ensure uncertainty. Following this, it em-
ploys k-means clustering on these gradient embeddings
to maintain a diverse selection of samples.



Table 6. Comparison results (mean±std) on medical image datasets for classification. We evaluated the balanced multi-class accuracy
(BMA) for Fed-ISIC and the accuracy for Fed-Camelyon and presented the mean result and standard deviation of three random seeds. Red
and blue highlights the Top-1 and Top-2 results, respectively.

Model Method Fed-ISIC (%) Fed-Camelyon (%)
R2 R3 R4 R5 R2 R3 R4 R5

- Random 61.59±1.45 64.90±1.53 65.53±1.31 64.99±1.43 94.82±0.30 95.40±0.24 96.02±0.12 96.34±0.07

G

Entropy [29] 61.82±1.38 65.74±1.62 65.99±0.35 64.44±1.21 94.91±0.54 95.98±0.14 96.53±0.16 96.84±0.14

TOD [10] 56.63±3.05 64.13±3.50 65.32±1.10 64.54±0.76 93.48±1.23 95.47±0.54 96.41±0.31 96.81±0.16

Gradnorm [35] 63.20±0.49 65.72±1.29 65.31±2.03 64.61±0.76 94.10±0.18 94.95±0.23 95.27±0.15 95.73±0.18

CoreSet [27] 62.19±1.57 66.73±0.49 66.33±0.30 65.62±1.09 93.89±0.53 94.15±0.26 95.14±0.35 96.04±0.18

BADGE [1] 62.26±1.74 64.98±1.56 65.46±1.94 64.39±0.63 94.87±0.38 95.55±0.19 96.07±0.16 96.29±0.25

L

Entropy [29] 62.61±3.39 64.95±1.87 66.93±1.44 65.76±2.34 95.07±0.24 96.05±0.03 96.68±0.07 96.73±0.12

TOD [10] 58.52±2.89 65.11±2.04 64.88±2.00 64.81±3.11 93.79±1.18 95.29±0.47 96.46±0.34 96.83±0.11

Gradnorm [35] 62.38±1.90 64.96±3.21 65.85±2.79 64.39±1.44 94.22±0.38 94.98±0.39 95.37±0.54 95.92±0.26

CoreSet [27] 63.16±0.70 66.84±0.49 66.43±0.89 66.40±0.36 93.92±0.40 94.12±0.24 95.24±0.34 95.87±0.17

BADGE [1] 63.12±0.72 65.54±1.47 65.41±1.77 64.80±2.39 95.09±0.23 95.73±0.27 96.14±0.21 96.50±0.05

E

Entropy [29] 63.21±0.59 64.86±1.09 66.35±0.14 65.57±1.92 95.03±0.01 96.08±0.23 96.52±0.20 96.88±0.18

TOD [10] 58.10±1.95 66.56±0.36 66.26±1.22 65.51±0.75 93.17±0.87 95.27±0.07 96.07±0.09 96.50±0.12

Gradnorm [35] 63.23±1.25 66.14±1.51 67.02±1.00 66.52±0.75 94.40±0.06 94.85±0.21 95.64±0.04 95.89±0.13

CoreSet [27] 62.53±1.50 65.91±0.78 66.61±0.20 66.84±0.21 93.90±0.25 93.95±0.31 94.94±0.09 95.85±0.13

BADGE [1] 59.45±0.67 64.27±0.74 66.73±0.46 64.71±1.07 94.97±0.41 95.62±0.11 96.25±0.12 96.37±0.10

LoGo [13] 62.36±2.30 66.43±0.69 66.12±2.64 66.26±0.50 94.98±0.07 95.60±0.15 96.20±0.26 96.51±0.05

KAFAL [5] 62.34±0.3 65.36±1.15 66.26±1.22 66.24±1.31 95.06±0.17 96.08±0.07 96.76±0.11 96.92±0.04

FEAL (Ours) 65.18±0.41 67.77±1.31 68.41±1.01 68.46±0.37 95.79±0.68 96.54±0.40 97.04±0.28 97.29±0.35

• LoGo: LoGo is specifically designed to address class-
imbalance issues in federated active learning, harness-
ing insights from both global and local models. It first
performed k-means clustering with gradient embeddings
extracted from the local model. Then it applied cluster-
wise sampling to select the most uncertain sample within
each cluster, identified by the highest entropy score in the
global model.

• KAFAL: KAFAL is another sampling strategy tailored
for federated active learning with class imbalance. It em-
ploys a knowledge-specialized KL divergence, calculated
between the global and local models, to quantify the in-
formativeness of unlabeled samples for both models. For
fair comparisons in our study, we implemented KAFAL
by exclusively using the supervised loss component.

C.2. Results

Image classification. Tab. 6 summarizes the quantitative
results of image classification. From the second to the
fifth FAL rounds, FEAL demonstrates superior performance
over the second-best method, achieving margins of 1.95%,
0.92%, 1.39%, and 1.62% on the Fed-ISIC dataset, respec-
tively. Furthermore, on the Fed-Camelyon dataset, FEAL
maintains a consistent performance advantage, surpassing
the second-best method by margins of 0.69%, 0.46%, 0.3%,
and 0.37% in these rounds. Additional results with differ-
ent annotation budgets/ratios on the Fed-ISIC dataset are
presented in Sec. C.3.

Image segmentaion. The mean results and standard de-
viations of Dice and HD95 metrics for the Fed-Polyp, Fed-
Prostate, and Fed-Fundus datasets are illustrated in Fig. 9,
Fig. 10, and Fig. 11, respectively. Extensive results in Fig. 9
- Fig. 11 indicate that FEAL yields superior performance on
three multi-center segmentation datasets, as evidenced by
its higher Dice scores and lower HD95 metrics. Notably,
FEAL outperforms the second-best method by the margin
of 1.78%, 0.63%, 0.89%, and 1.34% from the second to the
fifth rounds on the Fed-Polyp dataset.

C.3. Discussions

Effect of uncertainty calibration. In addition to the ab-
lation study conducted on the Fed-ISIC dataset for classifi-
cation, we expanded our analysis to include the Fed-Polyp
dataset, specifically examining the impact of uncertainty
calibration in segmentation tasks. The results, including the
average Dice score and the corresponding standard devia-
tion, are summarized in Tab. 7. Here, UG

epi, U
G
ale, and UL

ale
represent the epistemic uncertainty in the global model, the
aleatoric uncertainty in the global model, and the aleatoric
uncertainty in the local model, respectively. As can be
seen, the optimal performance is attained when incorpo-
rating UG

epi, U
G
ale, and UL

ale, demonstrating the effectiveness
of the proposed uncertainty calibration method. Further-
more, we visualize the aleatoric uncertainty in both global
and local models on the Fed-Polyp dataset in Fig 12. As
depicted in Fig 12, UG

ale and UL
ale highlight different regions

of a sample, underscoring the significance of integrating the
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Figure 9. Comparison results on the Fed-Polyp dataset.
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(b) Dice of Fed-Prostate (L)
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Figure 10. Comparison results on the Fed-Prostate dataset.
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Figure 11. Comparison results on the Fed-Fundus dataset.



aleatoric uncertainty in both global and locals for a thorough
assessment.

Table 7. Ablation study of uncertainty calibration on Fed-Polyp.

UG
epi UG

ale UL
ale Round 2 Round 3 Round 4 Round 5

- ✓ - 68.61±0.48 73.12±2.38 75.19±1.10 78.00±1.14

- - ✓ 69.13±1.15 75.19±1.29 77.85±1.20 78.12±1.29

- ✓ ✓ 66.89±3.41 74.48±1.00 76.56±1.49 76.86±0.43

✓ - - 70.61±4.22 74.45±2.29 75.07±2.42 78.25±1.29

✓ ✓ - 69.41±2.17 75.18±2.48 74.66±0.87 78.91±1.04

✓ - ✓ 69.29±2.51 75.93±1.41 76.74±1.08 78.28±0.67

✓ ✓ ✓ 72.06±0.72 76.39±0.66 78.62±0.81 80.18±0.10

Input Ground truth 𝑈!"#$ 𝑈!"#% 𝑈!"#$ + 𝑈!"#%

Figure 12. Visualization of aleatoric uncertainty on Fed-Polyp.
UG

ale and UL
ale denote the aleatoric uncertainty in global and local

models, respectively.

Effect of diversity relaxation. An ablation study was car-
ried out on the Fed-Polyp dataset to investigate the impact
of diversity relaxation. As illustrated in Fig. 13, the optimal
performance is attained when setting the minimum neigh-
bor size to n = 10 and the cosine similarity threshold to
τ = 0.90 on the Fed-Polyp dataset.
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Figure 13. Ablation study of diversity relaxation on Fed-Polyp.

Effect of evidential model training. We conducted ex-
periments to compare the evidential loss (L in Eq. 9) against
the cross-entropy loss (CE) on two classification datasets
and against dice loss (Dice) on three segmentation datasets.

As summarized in Tab. 8, the proposed evidential model
training yields an average performance gain of 1.03% on
the Fed-ISIC dataset, 0.29% on the Fed-Camelyon dataset,
1.16% on the Fed-Polyp dataset, 1.17% on the Fed-Prostate
dataset, and 0.36% on the Fed-Fundus dataset.

Table 8. Ablation study of loss function.

Dataset Loss Round 2 Round 3 Round 4 Round 5

Fed-ISIC CE 64.28±1.64 66.69±0.95 67.32±1.16 67.40±0.22

L 65.18±0.41 67.77±1.31 68.41±1.01 68.46±0.37

Fed-Camelyon CE 95.24±0.03 96.21±0.04 96.80±0.07 97.26±0.06

L 95.79±0.17 96.54±0.08 97.04±0.02 97.29±0.02

Fed-Polyp Dice 70.14±0.10 75.77±0.67 77.23±0.21 79.48±0.62

L 72.06±0.72 76.39±0.66 78.62±1.44 80.18±0.10

Fed-Prostate Dice 81.43±0.75 84.50±1.02 85.32±0.60 86.50±0.59

L 82.94±0.04 85.29±0.31 86.77±0.29 87.42±0.21

Fed-Fundus Dice 88.11±0.3 89.68±0.22 89.84±0.23 90.15±0.19

L 88.63±0.3 89.72±0.39 90.28±0.13 90.58±0.02

Effect of trade-off weight λ. We additionally conducted
experiments to determine the optimal value for the hyper-
parameter λ on the Fed-Polyp dataset, choosing from the
candidate set {1e−5, 5e−5, 1e−4, 5e−4, 1e−3}. The find-
ings, summarized in Tab. 9, reveal the optimal performance
is achieved when λ = 1e−4 for the Fed-Polyp dataset.

Table 9. Ablation study of trade-off weight λ on Fed-Polyp.

λ Round 2 Round 3 Round 4 Round 5
1e−5 70.91±1.89 76.27±0.36 75.98±1.09 78.58±1.85

5e−5 70.27±2.64 74.68±1.59 76.82±1.00 78.26±0.76

1e−4 72.06±0.72 76.39±0.66 78.62±1.44 80.18±0.10

5e−4 70.90±1.82 75.59±2.02 77.63±0.84 79.76±1.08

1e−3 69.78±1.64 74.54±2.56 76.92±1.91 77.64±0.88

Effect of annotation budget Bk. (1) Fixed-number. To
validate the effectiveness and robustness of FEAL, we fur-
ther analyzed the impact of annotation budget Bk on the
Fed-ISIC dataset. We conducted R = 10 rounds of FAL
with three configurations of Bk, i.e. Bk = {250, 500, 750},
for the Fed-ISIC dataset. As depicted in Fig. 14(a)-(c),
FEAL consistently outperforms other counterparts across
all three annotation budget configurations Bk, demonstrat-
ing its effectiveness and resilience. (2) Fixed-ratio. Fur-
thermore, considering the imbalanced dataset sizes among
local clients, we also implemented the fixed-ratio strategy
to annotate 10% of the samples for each client in every
FAL round. The results depicted in Fig. 14(d) demonstrate
that FEAL surpasses other competing methods even under
the fixed-ratio setting. Remarkably, both fixed-number and
fixed-ratio strategies exhibit similar performance in later
rounds, indicating that FEAL is robust against variations in
dataset sizes across local clients.
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(a) Annotation budget Bk = 250
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Figure 14. Ablation study of annotation budget Bk on Fed-ISIC.

Analysis of Dirichlet simplex. We analyzed the Dirichlet
simplex on a subset of the Fed-ISIC, specifically encom-
passing three classes: MEL, BCC, and BKL. Within the
Dirichlet simplex, a concentrated red region indicates low
epistemic uncertainty Uepi, while a red region near the cor-
ner suggests a low aleatoric uncertainty Uale. As depicted
in Fig. 15 and Fig. 16, when selecting samples with FEAL,
the Dirichlet distribution becomes narrower and more con-
centrated for unlabeled local data from the first to the fifth
FAL round. This trend suggests a reduction in epistemic un-
certainty within the global model, validating the effective-
ness of calibrated evidential sampling in mitigating domain
shifts. Moreover, starting with an identical set of labeled
samples, we tracked the selection of samples in the second
FAL round utilizing multiple FAL methods. The resulting
Dirichlet simplexes, corresponding to these different meth-
ods, are depicted in Fig. 17. A critical observation from this
analysis is that the Dirichlet distribution of samples selected
via FEAL exhibits a notably broader spread across the sim-
plex. This broader spread indicates that FEAL effectively
models the global model’s understanding of local data and
prioritizes the selection of samples characterized by high
epistemic uncertainty.

C.4. Evaluation Time Costs

All experiments were conducted using a NVIDIA GeForce
RTX 2080Ti GPU. The average time cost for one round of
data selection across all clients is presented in Tab. 10. Note
that we reported the time cost for the ensemble settings of
Entropy, CoreSet, TOD, Gradnorm, and BADGE.
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Figure 15. Visualization of the Dirichlet simplex for unlabeled
samples across five FAL rounds using FEAL. The unlabeled sam-
ples are predicted to belong to MEL, BCC, and BKL from the first
to the third rows, respectively. Please zoom in for details.
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Figure 16. Comparison of the Dirichlet simplex for unlabeled sam-
ples in the first and fifth FAL round using FEAL.
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The unlabeled samples are predicted to belong to MEL, BCC, and
BKL from the first to the third rows, respectively.



Table 10. Time cost (in seconds) for one round of data selection.

Method Fed-ISIC Fed-Camelyon Fed-Polyp Fed-Prostate Fed-Fundus
Entropy 23.49 189.97 8.11 14.20 8.39
CoreSet 81.27 340.24 9.68 14.56 8.30
TOD 23.26 331.01 14.50 55.71 28.53
Gradnorm 1126.95 5335.42 72.49 128.49 67.42
BADGE 24.51 178.66 68.12 119.74 69.17
LoGo 96.22 378.81 86.52 80.21 43.20
KAFAL 23.27 175.95 14.54 13.35 7.45
FEAL (Ours) 21.76 191.71 14.88 13.59 13.98

D. Investigations on OCTA Datasets
D.1. Experimental Settings

Dataset. We further validated the effectiveness of FEAL
on another medical image dataset OCTA-500 [18] for foveal
avascular zone (FAZ) segmentation. The OCTA-500 dataset
comprises two subsets, namely OCTA 3M and OCTA 6M,
each providing a distinct field of view (FOV). Specifically,
the field of views (FOV) for OCTA 3M is 3mm× 3mm×
2mm, while that for OCTA 6M is 6mm × 6mm × 2mm.
In our study, we regarded each subset as an individual lo-
cal dataset within federated scenarios and then divided each
local dataset into training and test sets using an 8:2 ratio.
Note that we utilized the projection maps between the In-
ternal Limiting Membrane (ILM) layer and the Outer Plexi-
form Layer (OPL) in experiments. Details of the OCTA-500
dataset are provided in Tab. 11. Illustrative samples from
both data sources within the OCTA-500 dataset are shown
in Fig. 18.

Dataset Data source # Train # Test Resolution

OCTA-500 Client 1: OCTA 3M [18] 160 40 304×304
Client 2: OCTA 6M [18] 240 60 400×400

Table 11. Details of multi-center datasets utilized in our study.

(a) Client1: OCTA_3M

(b) Client2: OCTA_6M

Figure 18. Illustrative samples from each data source within the
OCTA-500 dataset.

Evaluation metrics. In line with the aforementioned
three image segmentation datasets, we employed the Dice

score and the 95% Hausdorff Distance (HD95) as metrics
to quantify segmentation results.

Implemental details. We conducted R = 5 rounds of
FAL, which comprises federated model training and data
annotation. For federated model training, We adopted U-
Net [20, 26] as the backbone and employed the ReLU(·)
as the non-negative activation function A(·) for both global
and local models. We trained local models using the Adam
optimizer [14] with a learning rate of 5e−4 and a weight
decay of 1e−5. The federated learning process comprises
T = 100 rounds of communication to attain a robust global
model, with each local training session lasting for 1 epochs.
Regarding data annotation, the annotation budget Bk was
set to 20 for the OCTA-500 dataset.

D.2. Results

We compared FEAL with eight state-of-the-art FAL ap-
proaches and present the results in Fig. 19. The results in
Fig. 19 verify the effectiveness of FEAL on the OCTA-500
dataset, characterized by superior Dice scores and lower
HD95 metrics. It is noteworthy that FEAL achieves a Dice
score of 94.18% while utilizing only 24% of annotated sam-
ples, which is equivalent to 99.25% of the fully supervised
performance.
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Figure 19. Comparison results on the OCTA-500 dataset.

E. Discussion with EDL and DUC
Discussion with EDL. While Sensoy et al. [28] leveraged
evidential deep learning (EDL) to quantify the overall un-
certainty of training samples and alleviate model overcon-
fidence, our FEAL differs significantly in both objectives
and approaches. Specifically, we employed evidential deep
learning to decompose the overall uncertainty into aleatoric
and epistemic components, aiming to measure the uncer-
tainty of unlabeled samples and reduce annotation costs in
federated learning scenarios with domain shifts.

Discussion with DUC. Although DUC [37] employs
evidential deep learning to differentiate between aleatoric
uncertainty and epistemic uncertainty, there are notable
differences in both objectives and methods compared to



our FEAL. In terms of objectives, DUC aims to enhance
domain adaptation by annotating partial samples from the
target domain, whereas FEAL focuses on reducing anno-
tation costs for local clients in realistic medical federated
scenarios. Regarding informativeness measurement, DUC
evaluates the data informativeness based on a model trained
on the source domain, whereas FEAL quantifies data
informativeness leveraging both global and local models in
federated scenarios. Furthermore, DUC is an uncertainty-
based method that overlooks the diversity of selected target
samples. By contrast, FEAL identifies and annotates sam-
ples considering both uncertainty and diversity measures.
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