Towards Generalizable Tumor Synthesis
Supplementary Material

This supplementary material is organized as follows: §A provides visual examples for reader study and Visual Turing Test.
§B provides a description of Radiomics Features. §C provides additional results for generalizable to multiple organs. §D
provides additional results for generalizable to different patient demographics. §E provides the details of used datasets and
implementation for DiffTumor and Segmentation Model. §F provides discussions about comparison with related works,
unrealistic generation, and challenging case analysis.

A. Visual Examples

Radiologist cannot identify the organ type for the early tumors.

e 9

pancreas

B. More examples for reader study

Figure 8. Visual examples for the reader study. A. Quick test for identifying the organ type for the early tumors. B. More early tumors
for three abdominal organs. The organs corresponding to the early tumor in the first row of A are the liver, pancreas, kidney, liver, and
kidney. The organs corresponding to the early tumor in the second row of A are the pancreas, pancreas, liver, liver, and pancreas.
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Figure 9. Visual examples for the Visual Turing Test. We present real and synthetic tumors, arranged from smaller to larger sizes
(columns 1-4), for the Visual Turing Test. The radiologists are instructed to classify each tumor as either real or synthetic. Based on results
in §4.1 and Table 1, a minimum of 50% synthetic tumors are identified as real by both radiologists.
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B. Description of Radiomics Features

Radiomics Features [76] consist of a comprehensive set of quantitative, high-dimensional imaging attributes derived from
radiographic images, such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI), and Positron Emis-
sion Tomography (PET) scans. These attributes capture a broad spectrum of image characteristics, including shape, intensity,
texture, and wavelet, among others. The scope of Radiomics Features applications is expansive, ranging from predicting
disease prognosis to formulating treatment strategies and evaluating treatment response. The effectiveness of these features
has been validated across various medical fields, notably in oncology, neurology, and cardiology.

The key characteristics of Radiomics Features include their high-throughput capacity and reproducibility, which facilitate
a detailed characterization of tumor phenotypes. These features are multivariate, incorporating first-order statistics, shape
and size-based features, textural features, and filter-based features.

In this paper, we utilize the official Radiomics feature repository” to extract the appearance features, which include 3D
shape-based features (16 dimensions), gray level co-occurrence matrix (24 dimensions), gray level run length matrix (16
dimensions), gray level size zone matrix (16 dimensions), neighboring gray-tone difference matrix (5 dimensions), and gray
level dependence matrix (14 dimensions). The shape descriptors are independent of the gray value and are extracted from the
tumor mask. The definitions of these features can be referenced at https://pyradiomics.readthedocs.io/en/latest/features.html.
Based on the tumor mask annotations, we are able to extract only the appearance features of tumors. Consequently, for
each early-stage tumor, a 91-dimensional vector can be obtained. Ultimately, these features from all early-stage tumors are
aggregated for Radiomics feature analysis in Figure 2.

“https://github.com/AIM-Harvard/pyradiomics/
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Figure 10. Enhancement in all-stage tumor detection. We present the tumor detection results, measured by tumor-wise sensitivity,
across different Segmentation Models (U-Net, nnU-Net, Swin UNETR). Consistent with the results in tumor segmentation performance,

DiffTumor can significantly enhance tumor detection performance across these three common backbones.

C. Generalizable to Multiple Organs

nnU-Net [39]

source \ target liver pancreas kidneys
real tumors 77.4 1.8 2.4
liver Hu et al. [37] 78.0 56.3 61.9
DiffTumor 80.9 60.7 714
real tumors 1.5 67.0 24
pancreas Hu et al. [37] 76.2 68.8 61.9
DiffTumor 72.8 75.0 81.0
real tumors 0.9 0.9 59.5
kidney Hu et al. [37] 76.2 56.3 69.0
DiffTumor 77.4 63.4 76.2
Swin UNETR [32]
source \ target liver pancreas kidneys
real tumors 76.2 2.7 0
liver Hu et al. [37] 79.2 63.4 71.4
DiffTumor 83.1 69.6 73.8
real tumors 1.6 70.5 4.8
pancreas Hu et al. [37] 66.4 73.2 71.4
DiffTumor 76.2 79.5 90.5
real tumors 0.6 0 69.0
kidney Hu et al. [37] 66.4 63.4 76.2
DiffTumor 76.2 61.6 81.0

Table 3. Generalizable across various organs. We show the comparison of generalization for early-stage tumor detection (measured in
tumor-wise Sensitivity %) using additional backbones. The scores highlighted in bold denote the superior performance in each respective
domain. Consistent with the results on U-Net presented in Table 2, DiffTumor demonstrates superior performance across nearly all
domains on nnU-Net and Swin UNETR.
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U-Net metrics foldO foldl fold2 fold3 fold4 average

real tumor: DSC (%) 62.3 72.8 63.8 54.5 59.0 62.5
cal tumors NSD (%) 634 74.6 633 55.5 61.6 63.7
DiffTumor DSC (%) 70.9 74.0 67.9 59.1 60.6 66.5
NSD (%) 71.2 73.9 70.4 61.0 63.3 68.0

nnU-Net metrics fold0 foldl fold2 fold3 fold4 average
real tumors DSC (%) 64.3 70.2 64.3 56.3 59.6 62.9
NSD (%) 65.7 72.7 63.1 59.3 62.6 64.7
DiffTumor DSC (%) 73.6 73.9 67.6 64.9 63.8 68.8
NSD (%) 75.3 73.9 67.9 69.0 66.5 70.5

Swin UNETR metrics fold0 fold1l fold2 fold3 fold4 average
real tumors DSC (%) 65.1 69.4 574 59.0 58.2 61.8
. NSD (%) 65.9 71.7 53.1 62.1 61.9 62.8
DiffTumor DSC (%) 71.4 71.7 71.6 62.2 62.4 67.9
umoe NSD (%) 73.5 72.4 745 66.5 66.0 70.6

real tumors denotes Segmentation Model trained on 95 CT scans containing real tumors.
DiffTumor denotes Segmentation Model trained on 95 CT scans containing real tumors and 116 healthy CT scans.

Table 4. Liver tumor segmentation performance on 5-fold cross-validation. We conduct a comparative analysis of the Segmentation
Model (U-Net, nnU-Net, Swin UNETR) trained on both synthetic and real tumors against the model trained exclusively on real tumors,
employing 5-fold cross-validation. The evaluation metrics employed include the Dice Similarity Coefficient (DSC) and the Normalized
Surface Distance (NSD). DiffTumor consistently enhances liver tumor segmentation performance across these three backbones.

U-Net metrics fold0 foldl fold2 fold3 fold4 average
real tumors DSC (%) 56.0 51.9 455 59.4 432 51.2
NSD (%) 51.0 49.9 43.6 57.7 40.2 48.5
DiffTumor DSC (%) 64.8 58.0 57.7 67.9 51.8 60.0
NSD (%) 60.5 55.3 58.3 67.5 47.9 57.9

nnU-Net metrics fold0 fold1l fold2 fold3 fold4 average
real tumors DSC (%) 59.9 50.0 44.8 63.5 504 53.7
. NSD (%) 55.7 47.0 47.0 62.3 48.0 52.0
DiffTumor DSC (%) 63.6 60.5 62.5 67.8 55.3 61.9
NSD (%) 61.1 59.1 63.4 67.7 54.9 61.2

Swin UNETR metrics fold0 fold1l fold2 fold3 fold4 average
real tumors DSC (%) 522 49.5 50.9 60.0 52.1 529
NSD (%) 49.1 49.7 50.9 58.9 474 51.2
DiffTumor DSC (%) 62.2 60.2 59.0 69.7 53.8 61.0
NSD (%) 58.7 58.4 62.8 67.2 51.2 59.7

real tumors denotes Segmentation Model trained on 96 CT scans containing real tumors.
DiffTumor denotes Segmentation Model trained on 96 CT scans containing real tumors and 120 healthy CT scans.

Table 5. Pancreatic tumor segmentation performance on 5-fold cross-validation. We execute a comparative study of the Segmentation
Model (U-Net, nnU-Net, Swin UNETR) trained on both synthetic and real tumors against the model trained exclusively on real tumors,
utilizing 5-fold cross-validation. The employed evaluation metrics are the Dice Similarity Coefficient (DSC) and the Normalized Surface
Distance (NSD). DiffTumorconsistently yields a significant improvement in pancreatic tumor segmentation across these three backbones.
It should be noted that the segmentation of pancreatic tumors is deemed the most challenging task among the three abdominal organs in
study. The enhancement observed in pancreatic tumor segmentation is the most substantial among the three.
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U-Net metrics fold0 fold1l fold2 fold3 fold4 average

real tumors DSC (%) 75.1 68.0 69.0 78.1 70.6 72.0
NSD (%) 68.4 59.0 57.7 68.3 62.4 63.2
DiffTumor DSC (%) 84.2 76.7 79.4 80.6 74.1 79.0
NSD (%) 76.6 64.5 70.7 71.7 65.8 69.9
nnU-Net metrics fold0 fold1l fold2 fold3 fold4 average
real tumors DSC (%) 73.8 76.8 80.0 80.5 734 76.9
NSD (%) 62.7 70.2 71.2 70.8 67.5 68.5
DiffTumor DSC (%) 84.5 83.4 81.6 83.9 71.3 82.1
NSD (%) 78.3 74.4 74.1 76.9 723 75.2
Swin UNETR metrics fold0 foldl fold2 fold3 fold4 average
real tumors DSC (%) 80.6 64.9 79.1 76.0 722 74.6
NSD (%) 74.2 55.5 68.2 67.4 64.8 66.0
DiffTumor DSC (%) 85.1 772 81.2 85.7 79.9 81.8
NSD (%) 79.2 70.8 74.1 78.0 74.1 75.2

real tumors denotes Segmentation Model trained on 96 CT scans containing real tumors.
DiffTumor denotes Segmentation Model trained on 96 CT scans containing real tumors and 120 healthy CT scans.

Table 6. Kidney tumor segmentation performance on 5-fold cross-validation. We perform a comparative analysis of the Segmentation
Model (U-Net, nnU-Net, Swin UNETR) trained on both synthetic and real tumors versus the model trained exclusively on real tumors,
employing 5-fold cross-validation. Our evaluation metrics include the Dice Similarity Coefficient (DSC) and the Normalized Surface
Distance (NSD). Similar to the other two tumor segmentation tasks, DiffTumor can deliver substantial improvements in kidney tumor
segmentation across these three prevalent backbones.

zoom-in ground nnU-Net nnU-Net Swin UNETR  Swin UNETR
truth (Real) (Ours) (GEE] (Ours)

Figure 11. Liver tumor segmentation. We provide qualitative visualizations of Segmentation Models (U-Net, nnU-Net, Swin UNETR)
for liver tumor segmentation. The results from the first and second rows illustrate that DiffTumor can effectively reduce the number of
false positive cases to a certain extent. The results in the third and fourth rows indicate that DiffTumor can improve the detection rate
within the tumor region. Consequently, our method yields a substantial improvement in segmentation performance, as evidenced in Table 4.
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ground nnU-Net nnU-Net Swin UNETR  Swin UNETR
truth (EED) (Ours) (Real) (Ours) (Real) (Ours)

Figure 12. Pancreatic tumor segmentation. We provide qualitative visualizations of Segmentation Models (U-Net, nnU-Net, Swin
UNETR) for pancreatic tumor segmentation. Pancreatic tumor segmentation is more challenging as many tumors are easily missed by
Segmentation Models. The results displayed in rows 1-4 indicate that DiffTumor can aid detecting tumors that were missed during
training on real tumors, thereby resulting in a significant improvement in segmentation performance, as illustrated in Table 5.

CT scan zoom-in ground U-Net U-Net nnU-Net nnU-Net Swin UNETR  Swin UNETR
truth (Real) (Ours) (Real) (Ours) (GEE))) (Ours)

Figure 13. Kidney tumor segmentation. We provide qualitative visualizations of Segmentation Models (U-Net, nnU-Net, Swin UNETR)
for kidney tumor segmentation. Segmentation Models, when trained on real tumors, will miss the tumors located on the boundary of
the kidney or outside the kidney. DiffTumor can help enhance the segmentation of these difficult cases, thereby improving the overall
segmentation performance, as evidenced in Table 6.
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D. Generalizable to Different Patient Demographics

tumor-wise sensitivity
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Figure 14. Generalizable across different patient demographics. A comparison of generalization across different patient demograph-
ics for tumor detection (tumor-wise Sensitivity %) and segmentation (DSC %) using different backbones is provided. DiffTumor can
consistently enhance tumor detection and segmentation performance by a significant margin across various patient groups and different
backbones. The most significant improvement is observed on nnU-Net.
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E. Dataset & Implementation Details

E.1. Dataset Details

Real-tumor datasets. LiTS [6] comprises 131 and 70 contrast-enhanced 3-D abdominal CT scans for training and testing,
respectively. This dataset was compiled utilizing various scanners and protocols from six unique clinical sites, which resulted
in a significant variation in in-plane resolution (ranging from 0.55 to 1.0 mm) and slice spacing (ranging from 0.45 to 6.0
mm). The MSD-Pancreas [2] dataset comprises 420 portal-venous phase CT scans from patients who underwent pancreatic
mass resection. It includes 281 CT scans designated for training and 139 CT scans for testing. The annotations provided
correspond to the pancreatic parenchyma and pancreatic mass. KiTS [33] includes 210 CT scans for training and 90 CT
scans for testing. Each CT scan features one or more kidney tumors. The University of Minnesota Medical Center provides
the annotations.

Healthy-organ datasets. AbdomenAtlas-8K [64] is currently the most extensive multi-organ dataset, with annotations for
the spleen, liver, kidneys, stomach, gallbladder, pancreas, aorta, and IVC in 8,448 CT volumes, which equates to 3.2 million
slices. AbdomenAtlas-8K consolidates datasets from 26 distinct hospitals worldwide. In this study, we utilize the CLIP-
Driven Universal Model [55, 92] to select CT scans that feature the corresponding healthy abdominal organs. This model,
ranking first in the Medical Segmentation Decathlon (MSD) competition, has demonstrated high sensitivity and specificity
in tumor detection. Consequently, we employ the pre-trained weights® using the Swin UNETR backbone to identify CT
scans where the prediction includes the organs but does not include the corresponding tumors. Through this process, we have
obtained 1246 CT volumes with healthy livers, 1901 CT volumes with healthy pancreas, and 1005 CT volumes with healthy
kidneys.

Proprietary dataset. 1t comprises 5,038 CT scans with 21 annotated organs, with each case having been scanned by contrast-
enhanced CT in both venous and arterial phases, utilizing Siemens MDCT scanners. In this study, we utilize 532 CT scans
containing 690 PDAC to assess the generalizability of the Segmentation Model across varied patient demographics. The test
set we used includes 243 CT scans of males and 289 CT scans of females. Additionally, the age range of these patients spans
from 20 to 146, essentially covering all stages of a person’s life.

E.2. Implementation Details

Autoencoder Model. In this study, we train Autoencoder Model on a total of 9262 CT scans from the AbdomenAtlas-8K
dataset and a private dataset. The purpose is to learn a general low-dimensional latent representation of CT scans. The
model processes the CT volume into a latent feature, reducing the original input volume’s size by 1/4 in height, width,
and depth, respectively. We set the codebook size and dimensionality at 16384 and 8, respectively. CT scan orientation
is adjusted to specific axcodes, and isotropic spacing is applied to resample each scan, resulting in a uniform voxel size
of 1.0 x 1.0 x 1.0mm?>. Additionally, the intensity in each scan is truncated to the range [—175,250] and then linearly
normalized to [—1, 1]. During training, we crop random fixed-sized 96 x 96 x 96 regions. We employ the Adam optimizer
for training with 5, and 2 hyperparameters set to 0.9 and 0.999, respectively, a learning rate of 0.0003, and a batch size of
4 per GPU. The training is conducted over a week on a node with four A100 GPUs, completing 200k iterations.

Diffusion Model. In this study, we train the corresponding Diffusion Model specifically for tumors of three different ab-
dominal organs. The data preprocessing carried out during the training phase is identical to the approach used for training
Autoencoder Model. Besides, we utilize the Adam optimizer for training with 5, and o hyperparameters set to 0.9 and
0.999, respectively, a learning rate of 0.0001, and a batch size of 10 per GPU. The training is conducted over the course of a
day on a node with an A100 GPU for 60k iterations.

Segmentation Model. The code for the Segmentation Model is implemented in Python using MONAI®. In this study, we
implement Swin UNETR based on the Swin UNETR Base variant. The orientation of CT scans is adjusted to specific
axcodes. Isotropic spacing is utilized to resample each scan to achieve a uniform voxel size of 1.0 x 1.0 x 1.0mm3. Besides,
the intensity in each scan is truncated to the range [—175, 250] and then linearly normalized to [0, 1]. During training, we crop
random fixed-sized 96 x 96 x 96 regions with the center being a foreground or background voxel based on the predefined
ratio. Additionally, the input patch is randomly rotated by 90 degrees, and the intensity is shifted with a 0.1 offset, each
with probabilities of 0.1 and 0.2, respectively. To avoid confusion between the organs on the right and left sides, mirroring
augmentation is not employed. All models on real tumors are trained for 3,000 epochs and models on synthetic and real

Shttps://github.com/ljwztc/CLIP-Driven-Universal-Model
Shttps://monai.io/
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tumors are trained for 2,000 epochs. Moreover, the base learning rate is set at 0.0002, and the batch size is set at two. We
adopt the linear warmup strategy and the cosine annealing learning rate schedule. For details on the tumor synthesis process
during the training of the Segmentation Model, please refer to the provided code. For inference, we use the sliding window
strategy by setting the overlapping area ratio to 0.75. Besides, to rule out tumor mask predictions that do not belong to
the respective organs, we use the pseudo labels of organs obtained through [55] to process the predictions of Segmentation
Models.

F. Discussion
F.1. Comparison with Related Works

In recent works, Hu et al. [37] have synthesized tumors in the liver using a model-based approach. This approach, guided by
radiologists, involves several image-processing operations such as ellipse generation, elastic deformation, salt-noise genera-
tion, Gaussian filtering, scaling, and clipping. The synthetic tumors are realistic in comparison to real liver tumors. Notably,
the Al trained with synthetic tumors achieves segmentation/detection performance that is comparable to the performance of
the Al trained with real tumors.

However, the approach of Hu ef al. [37] requires significant effort and expertise to identify the proper imaging character-
istics of tumors. In other words, the resulting synthetic tumors need to be explicitly specified by radiologists, tailored to the
specific types of tumors and must be redesigned for tumors in other organs. To demonstrate the superiority of DiffTumor for
enhancing tumor segmentation in the three abdominal organs, we compare it with the representative tumor synthetic strategy
by Hu et al. [37]. The results can be found in Table 7.

Methods liver pancreas kidneys

DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)
real tumors 62.3 63.4 56.0 51.0 75.1 68.4
Hu et al. [37] 69.7 70.9 55.9 49.9 80.8 71.0
DiffTumor 70.9 71.2 64.8 60.5 84.2 76.6

Table 7. Comparison for tumor segmentation enhancement. The comparison for all-stage tumor segmentation is conducted based on
the U-Net backbone. While Hu ez al. [37] is designed for liver tumor synthesis, DiffTumor can bring more significant improvement in liver
tumor segmentation. The synthesized tumors by Hu et al. [37] can also boost the DSC and NSD scores for kidney tumor segmentation.
However, DiffTumor can yield better results. Additionally, when adding the synthesized tumors by Huer al. [37] for pancreatic tumor
segmentation, the DSC and NSD scores even drop compared with training solely on real tumors. This suggests that the synthetic strategy
may not be suitable for the synthesis of pancreatic tumors. On the contrary, DiffTumor can significantly improve pancreatic tumor
segmentation. These results underline the superiority of DiffTumor in enhancing tumor segmentation across various abdominal organs.

F.2. Unrealistic Generation

Although DiffTumor is capable of generating highly realistic tumors, it also occasionally produces some that are less con-
vincing. Consequently, about 50% of the tumors are identified as inauthentic by the more experienced radiologist in the
Visual Turing test. The tumors deemed inauthentic fall short in several aspects, such as shape, attenuation and noise dis-
tribution. Some synthetic tumors have inaccurate shapes, resembling flat, strip-like, or sickle-shaped lesions. In contrast,
early-stage tumors originating from parenchymal organs typically exhibit a round or oval shape. Larger tumors fail to display
a mass effect, characterized by the displacement of normal structures due to the tumor’s inherent volume. Furthermore, some
synthetic tumors inaccurately display a lower density, which is similar to that of fat or fluid. Finally, the noise distribution in
some synthetic tumors does not match that in the CT background. We show several unrealistic generation cases in Figure 15.

F.3. Challenging Cases Analysis

Instances of low performance are observed with all Segmentation Models (U-Net, nnU-Net, Swin UNETR) trained on both
synthetic and real tumors. These instances often involve tumors with uncommon imaging features, as identified by experi-
enced radiologists. Examples of these tumors from the liver, kidney, and pancreas are provided in Figure 16.
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Figure 15. Unrealistic generation cases. (a) A synthetic liver tumor with an edge that is too sharp for a malignant tumor, and the inner
noise has a discrepancy from the surrounding tissue. (b) A synthetic tumor with a sickle shape, which is unrealistic for a liver tumor. (c)
A synthetic kidney tumor in the corticomedullary junction zone exhibiting a round nodular shape. However, this lesion fails to display
a mass effect, as the healthy surrounding renal structure shows no deformation due to the tumor’s inherent volume. Additionally, the
texture and noise inside the tumor do not match the CT background. (d) A synthetic kidney tumor has a shape that matches the kidney
“perfectly.” However, solid tumors tend to grow expansively into a round nodular shape rather than precisely overlapping with the organ.
(e) A synthetic tumor with a sickle shape, which is unrealistic for a pancreatic tumor. Additionally, the attenuation of this lesion is too
low for a solid pancreatic tumor. (f) A synthetic pancreatic tumor adjacent to extra-pancreatic vessels. This tumor shows no mass effect,
leaving the vessels without displacement or infiltration.
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Figure 16. Challenging cases for tumor segmentation. Liver tumor: An irregular heterogeneous hypoattenuating mass is observed in
the left lateral lobe of the liver, showing extracapsular penetration and infiltration into the stomach. The area with lower hypoattenuation
inside the tumor indicates necrosis. Kidney tumor: This is a case with multiple renal tumors in the cortex and corticomedullary junction
zone. Some of the tumors exhibit isoattenuation with the renal medulla, posing difficulties in detecting the lesions. Pancreatic tumor:
In the illustrated case within this figure, the segmentation model erroneously classifies dilated pancreatic ducts as a tumor, resulting in
inaccurate segmentation. Conversely, the genuine tumor, characterized by its indistinct boundaries, is not successfully segmented.
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