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Outline. In Sec. 1, we analyze additional insights into
the synergistic use of Anti-Memorization Guidance (AMG)
with our deliberately designed conditional guidance strat-
egy and parabolic scheduling. Sec. 2 introduces KDE plots
as an alternative evaluative method for memorization, show-
casing the distribution of the top 1 similarity score across
generated images, complementing the main paper’s quanti-
tative results. Sec. 3 demonstrates AMG’s adaptability in
switching samplers or similarity metrics within its guidance
to meet specific user needs, maintaining effectiveness in
memorization eradication. Sec. 4 delves into the implemen-
tation details. Finally, Sec. 5 offers additional qualitative
results.

1. Additional Analysis

The power of AMG can be amplified when paired with our
deliberately designed conditional guidance strategy that in-
corporates a parabolic scheduling threshold for determining
the activation of AMG at each inference step.

Firstly, the efficacy of Gsim, our dissimilarity guidance
component, is clear in Fig. 1 to Fig. 5, with guided versions
consistently registering lower similarity scores compared to
their ablated counterparts, indicating successful deviation
from memorized training images:

Gsim “ c3
?
1 ´ ᾱt ¨ ∇xt

σt (1)

where c3 further enables users to control the guidance inten-
sity, thus balancing privacy and utility. This is also capable
of providing a guarantee of memorization-free generations
by simply setting a large c3 at the cost of output quality.
Pairing Gsim with our conditional guidance strategy can
optimize such trade-off.

Specifically, our conditional guidance uses a parabolic
schedule (Eq. (2)) that is closely aligned with the character-
istics of the denoising stages as can be observed from the
blue lines in Fig. 1 to Fig. 5, where early-stage predictions
have lower similarity scores, which is then increased expo-
nentially in the following mathematical form:

λt “ a ` pb ´ aqe´ct (2)

This distinctive pattern of similarity scores during the
denoising stages can be attributed to the initial noised and
imprecise predictions, which register exceedingly low sim-
ilarity scores according to nL2 (Eq. (3)). As t decreases,
the denoising process yields more distinct predictions x̂t,
resulting in elevated similarity scores that can potentially

Figure 1. Example illustrating the detection of potential memo-
rization at an early stage of reverse diffusion process, enabling
AMG to influence the coarser structures in generated outputs.

reveal cases of memorization.
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Our parabolic schedule is tailored to this trend, serving
as the threshold for AMG’s activation. This design facili-
tates the early detection and intervention of potential mem-
orization instances, as demonstrated in Fig. 1, Fig. 2, and
Fig. 3. Specifically, in Eq. (2), the parameter a represents
the asymptotic threshold value that the parabolic schedule
approaches as t increases towards infinity, which we have
set to ´1.95. The parameter b denotes the value of the
parabolic schedule at t “ 0, and we have set this to ´1.5, in-
tentionally lower than the threshold defining memorization,
which is ´1.4. c controls the shape of the parabolic sched-
ule, which we set to ´0.025 to produce the green dashed
lines in Fig. 1 to Fig. 5.

Fig. 4 and Fig. 5, serving as two counterexamples,
underscores the importance of timely intervention. Uti-
lizing a constant guidance schedule results in late mem-
orization detection, necessitating larger late-stage adjust-
ments. These adjustments often involve last-ditch efforts
like adding noise to the image background, noticeable upon
close inspection in Fig. 4 and Fig. 5, to reduce the similarity
score. Such measures can diminish image quality and might
still fail to effectively prevent memorization.

By identifying and intervening memorization early,
AMG primarily affects the coarser structures, preserving



Figure 2. Example illustrating the early detection of potential
memorization at an intermediate stage of reverse diffusion pro-
cess, enabling AMG to influence the generation’s structures that
are between coarse and fine detail.

Figure 3. Another example illustrating the early detection of po-
tential memorization at an intermediate stage of reverse diffusion
process, enabling AMG to influence the generation’s structures
that are between coarse and fine detail.

the finer details and overall aesthetic of the generated im-
ages. This approach avoids resorting to last-minute mea-
sures to lower the similarity score at the cost of quality.
Thus, this optimizes the privacy-utility trade-off, results in
more visually appealing outputs that are distinct from the
training data, as demonstrated in Fig. 1 to Fig. 3.

2. Alternative Evaluative Method
In the main paper, we first evaluate memorization using two
key quantitative metrics in accordance with the established
standards in the literature: (1) the 95th percentile of the top
1 similarity scores of all generated images, as per [6], and
(2) the proportion of images exceeding certain similarity
thresholds, indicating memorization, following [2]. Addi-

Figure 4. An ablated counterexample highlighting the risk of
incomplete memorization prevention and the consequence of al-
tering only the finest details and injecting noises to image back-
ground to lower the similarity score when employing a constant
guidance schedule, as opposed to the more effective parabolic
scheduling in our conditional guidance approach.

Figure 5. Another ablated counterexample highlighting the risk
of incomplete memorization prevention and the consequence of al-
tering only the finest details and injecting noises to image back-
ground to lower the similarity score when employing a constant
guidance schedule, as opposed to the more effective parabolic
scheduling in our conditional guidance approach.

tionally, we assess the maximum similarity score to under-
stand the worst-case scenario. Relying solely on the 95th
percentile might not fully capture the distribution, particu-
larly if there’s a significant upper tail beyond this percentile.

However, these metrics still don’t fully represent the dis-
tribution of the top 1 similarity scores. To address this,
we introduce qualitative KDE (Kernel Density Estimation)
plots as a complementary qualitative evaluation method for
memorization, showcased in Fig. 6, Fig. 7, and Fig. 8, pro-
viding a more comprehensive view of the data distribution.



Figure 6. KDE plot depicting the top 1 similarity scores for un-
conditional CIFAR-10 generation. AMG effectively shifts all
outputs to the left, maintaining similarity scores below the estab-
lished memorization threshold.

Figure 7. KDE plot depicting the top 1 similarity scores for class-
conditional CIFAR-10 generation. AMG effectively shifts all
outputs to the left, maintaining similarity scores below the estab-
lished memorization threshold.

Figure 8. KDE plot depicting the top 1 similarity scores for text-
conditional LAION generation. AMG effectively shifts all out-
puts to the left, maintaining similarity scores below the established
memorization threshold.

Text-conditional image generation presents a greater
memorization challenge, as depicted in Fig. 8, where a
larger portion of the blue curves (representing the top 1 sim-
ilarity scores of pretrained models) cross the memorization
threshold compared to unconditional and class-conditional
generations in Fig. 6 and Fig. 7. Irrespective of the gen-

Memorization Metrics by SSCD Ó

Top5% Top1 %ą0.90 FIDÓ

iDDPM [4] 0.83 0.96 0.42 7.44
Ours 0.79 0.85 0.00 7.58

Table 1. Comparisons on unconditional generation of CIFAR-10
based on SSCD similarity. AMG effectively eliminates memoriza-
tion without affecting image quality.

eration task, AMG reliably shifts these distributions left-
ward, reducing similarity to training data. The main AMG
version ensures all top 1 similarity scores fall below the
conventional thresholds (´1.40 for CIFAR-10 and 0.50 for
LAION), and the strong AMG version meets even stricter
thresholds (´1.60 for CIFAR-10 and 0.40 for LAION), af-
firming its efficacy.

3. AMG’s Wide Adaptability

This section illustrates AMG’s flexibility as a unified frame-
work adaptable to different similarity measures for guid-
ance signals and evaluation, as well as to different sampling
methods including DDPM and accelerated techniques like
DDIM [7], while retaining its efficacy.

3.1. Switching Similarity Measures

Self-supervised Copy Detection (SSCD) has emerged as the
preferred method for detecting memorization in the LAION
dataset [3, 5, 6], outperforming other metrics like the nor-
malized L2 distance (nL2) and CLIP. Although nL2 has
been the metric of choice for CIFAR-10 in prior studies [2],
no work has verified its superiority to other measures such
as SSCD. Thus, to complement, we also adopt SSCD as the
guiding and evaluation metric within AMG, as an alterna-
tive to nL2. This change allows SSCD to influence guidance
activation and scale, and also to direct updates in the predic-
tion process as described in Eq. (1). For CIFAR-10, we find
a threshold of 0.50 for top 1 SSCD similarity does not ac-
curately indicate memorization, often resulting in false pos-
itives. Therefore, we have adjusted the threshold, consider-
ing instances with top 1 SSCD similarity scores above 0.90
as true memorization cases to improve the test’s precision.
Tab. 1 shows that AMG retains its effectiveness in eliminat-
ing memorization even when transitioning to SSCD, con-
firming the framework’s flexibility and robustness.

3.2. Switching Samplers

In the main paper, we detail the implementation of our
Anti-Memorization Guidance (AMG) framework utilizing
the DDIM sampler. For tasks with lower computational de-
mands such as unconditional and class-conditional genera-
tion on the CIFAR-10 dataset, employing the DDPM sam-
pler is a practical alternative. With the DDPM sampler, the
dissimilarity guidance Gsim in AMG framework simplifies



to the following expressions:

Gsim “ c ¨ ∇xt
σt (4)

xt´1 Ð sample from N pµ ´ 1tσtąλtu ¨ ΣGsim,Σq (5)

where µ and Σ represent the mean and variance of the
model’s predicted distributions, respectively. These adjust-
ments maintain the integrity of AMG’s guidance while ac-
commodating the operational characteristics of the DDPM
sampler.

4. Implementational Details
This section provides additional implementational details,
please refer to the code for even more comprehensive de-
tails, which is also included in the supplementary material.

Applying AMG on Latent Diffusion Models (LDMs).
As discussed in the main paper, to compute similarity
scores, we need to obtain the model’s prediction of x̂0 using
the following Diffusion Kernel:

x̂0 “
xt ´

?
1 ´ ᾱt ¨ ϵ̂

?
ᾱt

(6)

This presumes the representation xt is in the pixel space
across the diffusion steps from t “ T to 0, so that we can
then search for its nearest neighbor n0 in the training set,
which is also in the pixel space. However, in the context of
LDMs, x̂0 would be in latent space, thus it necessitates an
additional conversion step using the decoder D from LDM’s
pre-trained autoencoder to obtain the pixel-space represen-
tation: x̂0 Ð Dpx̂0q, before searching for its nearest train-
ing image in this updated pixel-space representation.

Scope of memorization eradication. Our research am-
bitiously targets the most practically significant scope of
eliminating memorization in diffusion models, specifically
ensuring the generation of images with a similarity score
below a commonly accepted threshold (e.g., SSCD ă 0.50)
across the extensive LAION5B dataset.

Initially daunting due to the sheer volume of compar-
isons required, the task was made feasible by utilizing the
official clip-retrieval tool [1] provided by the LAION5B
dataset creator, which includes a pre-trained k-nearest
neighbor index for the entire LAION5B dataset. Specif-
ically, its ClipClient allows remote querying of a clip-
retrieval backend via python for very efficient retrieval of
nearest neighbors based on the dot product of CLIP embed-
dings.

A challenge arises from the discrepancy between the
CLIP-based retrieval provided by ClipClient and the SSCD
embedding we use for object-level similarity. To bridge this
gap, for each generated image, we retrieve the closest 1000
neighbors according to CLIP embeddings and then compute
SSCD similarities to pinpoint the closest match. While this

introduces a small risk of missing the global SSCD min-
imum, it’s manageable by adjusting the search breadth at
additional or less computational costs.

Furthermore, our approach allows for targeted scrutiny
of specific images, where the user can directly supply URLs
of the images of interest, circumventing broader searches to
focus on preventing memorization of chosen images. Im-
plementationally, our method necessitates only the image
URLs as additional input. The algorithm automates the
process thereafter, loading the URLs as images, comput-
ing their SSCD embeddings, and ensuring these specified
images are included in the SSCD similarity computation,
regardless of their retrieval status via ClipClient.

This personalized approach can drastically cut compu-
tational demands and refine the search to user-defined pri-
orities. It also encompasses the narrower scope adopted in
baseline methods like those in [6], treating them as a subset
scenario where our methodology is adapted to their set of
10,000 selected LAION5B images, sidelining the broader
ClipClient search.

5. Additional Qualitative Results
Finally, we present additional qualitative results in Fig. 9,
Fig. 10, and Fig. 11 to demonstrate AMG’s effective-
ness in guiding pretrained diffusion models to produce
memorization-free outputs.
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Figure 9. Additional qualitative comparisons showcase AMG’s effectiveness in guiding pretrained dif-
fusion models to produce memorization-free outputs.



Figure 10. Additional qualitative comparisons showcase AMG’s effectiveness in guiding pretrained
diffusion models to produce memorization-free outputs.



Figure 11. Additional qualitative comparisons showcase AMG’s effectiveness in guiding pretrained
diffusion models to produce memorization-free outputs.


