
Towards Robust 3D Pose Transfer with Adversarial Learning
–Supplementary Materials–

Haoyu Chen1 Hao Tang2 Ehsan Adeli3 Guoying Zhao1,3∗

1CMVS, Finland 2CMU, USA 3Stanford University, USA
*Corresponding Author

{chen.haoyu, guoying.zhao}@oulu.fi, bjdxtanghao@gmail.com, eadeli@stanford.edu

1. 3D-PoseMAE Network Architecture
Our 3D-PoseMAE framework consists of two main parts:
the multi-scale masking feature extractor, and the 3D-
PoseMAE decoder. We first introduce the network struc-
tures of each component and then give the architectural pa-
rameters of the full model.
Multi-scale Masking Feature Extractor. The architecture
of the feature extractor is presented in Table 1. The fea-
ture extractor is used to extract a set of latent embeddings
from S-scale representations from the given source pose for
further mesh generation with the following decoders. Basi-
cally, it works as a normal 3D feature extractor that encodes
the input meshes with vertex number N1 into a latent vector
with C size. The difference is that the latent vector will be
expanded up based on the target meshes along the topology
dimension (vertex number N2), resulting in a latent vec-
tor with C × N2. In this way, we align the sizes between
the source mesh and target mesh as the same and make the
learning of the correspondence possible.
3D-PoseMAE Decoder. The network architecture of a 3D-
PoseMAE decoder is presented in Table 2. Following pre-
vious works regarding the 3D pose learning [4, 7], we mod-
ified the LayerNorm operation from a classical Transformer
architecture into an instance normalization (InsNorm) block
inspired by [10] presented in Table 3. This is to preserve the
geometric structures of the point cloud while naively using
MLP layers will whiten the 3D geometric information. The
3D-PoseMAE decoder is used to generate the posed target
mesh with a given source pose with full geometric details
preserved.

At last, we present the full model architecture in Table 4.
The embedded pose features will be fed into 3D-PoseMAE
decoders together with the target mesh and pose mesh will
be generated.

2. Dataset Settings
Training Sets. We use the SMPL-NPT dataset [10] to pre-
pare the training dataset for quantitative evaluation. Note

Table 1. Detailed architectural parameters for the 3D mesh fea-
ture extractor. “B” stands for batch size and “N” stands for vertex
number. The first parameter of Conv1D is the kernel size, the sec-
ond is the stride size. “N”’ stands for the intermediate point cloud
number. The same as below.

Index Inputs Operation Output Shape

(1) - Input mesh B×3×N
(2) - Input mesh B×3×N/2
(3) - Input mesh B×3×N/4
(4) (1) Masking B×3×N× ϕ
(5) (2) Masking B×3×N/2× ϕ
(6) (3) Masking B×3×N/4× ϕ

(7),(8),(9) (4),(5),(6) Conv1D (1 × 1, 1) B×64×N’
(10),(11),(12) (7),(8),(9) Instance Norm, Relu B×64×N’
(13),(14),(15) (10),(11),(12) Conv1D (1 × 1, 1) B×128×N’
(16),(17),(18) (13),(14),(15) Instance Norm, Relu B×128×N’
(19),(20),(21) (16),(17),(18) Conv1D (1 × 1, 1) B×1024×N’
(22),(23),(24) (19),(20),(21) Instance Norm, Relu B×1024×N’

(25) (22),(23),(24) Max pooling and adding B×1024×1
(26) (25) Tiling B×1024×N

that we only need to train on the SMPL-NPT once, and
the model can be generalized and directly conduct the hu-
man pose transfer on other testing datasets without further
finetuning. SMPL-NPT is a synthesized dataset containing
24,000 body meshes generated via the SMPL model [2] by
random sampling in the parameter space. 16 different iden-
tities paired with 400 different poses are provided for train-
ing. Since the number of paired ground truths will be expo-
nentially huge (24,000*24,000), we randomly select 4,000
training pairs at each epoch during the training.
Quantitatively Testing Sets. We use the SMPL-NPT
dataset [10] to prepare the testing set for quantitative evalua-
tion. Following the training stage, 14 new identities (differ-
ent than those in the training set) are paired with 400 poses
used in the training set as the “seen” protocol and 200 new
poses as “unseen” protocols.
Qualitatively Testing Sets. We use the model trained from
SMPL-NPT dataset [10] to conduct the pose transfer di-
rectly on the other human mesh datasets [1, 3] for quan-

1

Table 2. Detailed architectural parameters for 3D-PoseMAE de-
coder.

Index Inputs Operation Output Shape

(1) - Identity Embedding B×C×N
(2) - Pose Embedding B×C×N
(3) (1) conv1d (1 × 1, 1) B×C×N
(4) (2) conv1d (1 × 1, 1) B×C×N
(5) (3) Reshape B×N×C
(6) (5)(4) Batch Matrix Product B×C×C
(7) (6) Softmax B×C×C
(8) (7) Reshape B×C×C
(9) (2) conv1d (1 × 1, 1) B×C×N

(10) (2)(8) Batch Matrix Product B×C×N
(11) (10) Parameter gamma B×C×N
(12) (11)(2) Add B×C×N
(13) - Pose Mesh B×3×N
(14) (12)(13) SPAdaIN B×C×N
(15) (14) conv1d(1 × 1, 1), Relu B×C×N
(16) (14)(15) SPAdaIN B×C×N
(17) (16) conv1d(1 × 1, 1), Relu B×C×N
(18) (12)(13) SPAdaIN B×C×N
(19) (18) conv1d(1 × 1, 1), Relu B×C×N
(20) (17)(19) Add B×C×N

Table 3. Detailed architectural parameters for SPAdaIN block.

Index Inputs Operation Output Shape

(1) - Driving Pose Embedding B×C×N
(2) (1) Instance Norm B×C×N
(3) - Target Mesh B×3×N
(4) (3) Conv1D (1 × 1, 1) B×C×N
(5) (3) Conv1D (1 × 1, 1) B×C×N
(6) (4)(2) Multiply B×C×N
(7) (6)(5) Add B×C×N

titative evaluation. Specifically, we chose the meshes from
those two datasets which are not strictly an SMPL model.
Then we set them as target meshes and drive them with the
source poses from the SMPL-NPT [10].
Other Domains. We also extend the 3D-PoseMAE to
other domains. We demonstrate the generalizability of 3D-
PoseMAE over the animal domain on the Animal dataset
[9] and hand domain on the MANO dataset [8]. The Ani-
mal dataset provides correspondences and ground truths of
identical motions performed by different animals, such as
horses, camels, and elephants. Although the vertex number
of pose and target meshes are not consistent, i.e., the camel
mesh has a different vertex number 21,887 than the horse
mesh 8,431, our multi-scale masking encoders can effec-
tively handle it. For hand meshes from the MANO dataset,
the input and output meshes are all with 778 vertices. Since
the topology structures of hands and animals are totally dif-

Table 4. Detailed architectural parameters for the full model.

Index Inputs Operation Output Shape

(1) - Target Mesh B×3×N
(2) - Driving Pose Mesh B×3×N
(3) (2) Feature Extractor B×1024×N
(4) (3) Conv1D (1 × 1, 1) B×1024×N
(5) (4)(1) 3D-PoseMAE decoder 1 B×1024×N
(6) (5) Conv1D (1 × 1, 1) B×512×N
(7) (6)(1) 3D-PoseMAE decoder 2 B×512×N
(8) (7) Conv1D (1 × 1, 1) B×512×N
(9) (8)(1) 3D-PoseMAE decoder 3 B×512×N

(10) (9) Conv1D (1 × 1, 1) B×256×N
(11) (10)(1) 3D-PoseMAE decoder 4 B×256×N
(13) (12) Conv1D (1 × 1, 1) B×3×N
(14) (13) Tanh B×3×N

ferent than human meshes, directly conducting pose transfer
with a model trained on human meshes on animals or hands
will lead to a degenerated result. Instead, for each domain
(i.e., hand or animal), we train the pose transfer on those
domains (i.e., hand or animal) as domain-specific learning.
Raw Scans. We further extend our method directly on the
raw scans from the DFAUST dataset [3]. To do so, we
need to canonicalize the scans from the DFAUST dataset
so that the world coordinates can be unified into a normed
space as the learned latent pose space. Specifically, we re-
set the world coordinate of the target mesh by shifting the
vertices to the center and scaling the vertex value into the
norm space. Then the pose transfer is conducted to the tar-
get mesh. Our method is robust against the global scale and
rotation.
Licenses of the Assets. The licenses of the assets used in
this paper are shown in Table 5. Their licenses are given on
the websites.

3. Experimental Implementation
Computational setting. Our algorithm is implemented in
PyTorch [6]. All the experiments are carried out on a server
with four Nvidia Volta V100 GPUs with 32 GB of mem-
ory and Intel Xeon processors. We train our networks for
400 epochs with a learning rate of 0.00005 and the Adam
optimizer. The weight settings in the paper are λrec=1,
λedge=0.0005. The weight settings directly follow the pre-
vious work [10]. The batch size is fixed as 4 for all the
settings. For the first 200 epochs, only pure training with
clean samples is conducted to stabilize the model and avoid
local minima, where the reconstruction loss and edge loss
are used. After 200 epochs, the adversarial training starts
with adversarial samples added.
Design of Adversarial Functions. As mentioned in the
main submission, the goal of constructing the adversarial

Table 5. Licenses of the assets used in the paper.

Data License websites

SMPL [2] https://smpl.is.tue.mpg.de/modellicense.html
SMPL-NPT [10] https://github.com/jiashunwang/Neural-Pose-Transfer

MANO [8] https://mano.is.tue.mpg.de/license.html
DFAUST [3] https://dfaust.is.tue.mpg.de/license.html
FAUST [1] http://faust.is.tue.mpg.de/data_license
Animal [9] https://people.csail.mit.edu/sumner/research/deftransfer/

function is to achieve:

𭟋(Madv pose,Mid; θ) ̸= MGT . (1)

Thus it can be converted to maximizing the
||𭟋(xadv; θ) − MGT ||. However, we cannot naively
have:

fadv = −||𭟋(Madv pose,Mid; θ)−MGT ||. (2)

Because the above function cannot be solved by min-
imizing the loss during the gradient propagation. Be-
sides, this expression cannot comply with C&W-based at-
tacks. Because for C&W-based attacks, we have:

floss = fadv + fdist, (3)

where fdist is the distance between the adversarial samples
and the original samples. If we implement an adversarial
function as Eq. (2), it will offset the fdist, causing the gra-
dient vanishing problem.

Thus, we naturally think of proposing to take the expo-
nential function of −||𭟋(xadv; θ) − MGT || to convert the
maximizing problem into a minimizing problem as below:

fadv = e−||𭟋(xadv ;θ)−MGT ||, (4)

In this way, the adversarial loss term fadv can be positive
and decrease when the transfer error gets bigger, fitting our
demand. However, in practice, we find that the expression
of Eq. (4) cannot provide a strong gradient for efficiently
generating adversarial samples. Thus we modify the above
adversarial function in an even more intuitive way:

fadv = ||𭟋(Madv pose,Mid; θ)−MGT ||−1. (5)

By minimizing the above term, we can push the gen-
erated results from the model away from the ground truth
mesh, resulting in an attack effect.
Settings for Adversarial Attacks. After confirming the
adversarial function, we implemented several state-of-the-
art 3D adversarial attack methods for a preliminary study,

Budget/magnitude of FGM

0.08 0.008 0.0008

Source poseTarget

Result of NPT being attacked

Figure 1. The attacking results of FGM methods on a trained NPT
model with different magnitudes. The NPT model is trained with
clean samples, so both the pose and appearance of the generated
meshes are affected a lot. We also can see that the model is vul-
nerable to the noisy pose source.

including Fast Gradient Method (FGM) [5], Iterative Fast
Gradient Method (IFGM) [5], Momentum Iterative Fast
Gradient Method (MIFGM) [5], Projected Gradient De-
scent (PGD) [5] and C&W perturbation [11]. For FGM-
based methods, the attacking budget is all set as 0.08, the
iteration is set as 10, the distance function is L2 norm, and
the µ of the MIFGM is 0.1. For C&W perturbation [11],
we follow the original setting from the work [11], with the
binary search step as 20 and the iteration as 100.

4. Experiments Results
Different Attacking Methods. Firstly, we conduct a pre-
liminary evaluation of different attacking methods to choose
the best-attacking method for the adversarial training. We
implemented different adversarial methods and their run-
times in Table. As shown in Table. 6, we present the pose
transfer results using those adversarial samples on a trained
model (NPT [10]). We can see that the trained NPT model
is very sensitive to attacks with large PMD value, mean-
ing the transferred results degenerate. The reason why the
Perturbation method shows a smaller PMD is that C&W-

https://smpl.is.tue.mpg.de/modellicense.html
https://github.com/jiashunwang/Neural-Pose-Transfer
https://mano.is.tue.mpg.de/license.html
https://dfaust.is.tue.mpg.de/license.html
http://faust.is.tue.mpg.de/data_license
https://people.csail.mit.edu/sumner/research/deftransfer/

Table 6. Different attacking methods and their runtimes.

Methods PMD↓ (×10−4)
Runtime/
second per sample

FGM [5] 237.6 0.008
IFGM [5] 244.1 0.124
MIFGM [5] 342.3 0.131
PGD [5] 242.1 0.122
Perturbation [11] 180.7 20.320

Identity Transferred resultSource pose
(point cloud with
Gaussian noise)

Ground truth

Identity Transferred result Ground truthSource pose
(point cloud with
Gaussian noise)

Figure 2. The performance of our method on other domains. We
add Gaussian noise to the input point cloud to demonstrate the
robustness of the model.

Source pose
(scan)

Target NPT 3D-PoseMAE (Ours)

3D-PoseMAE (Ours)Source pose
(scan)

Target NPT

Figure 3. The performance of our method and compared method
on raw scans.

based methods have a distance loss term and this term will
constrain the adversarial samples to be similar to the origi-
nal meshes, leading to moderated attacks. Taking both the
computational efficiency and adversarial training effective-
ness into account, we chose FGM attack [5] as the attack
type in all the protocols to achieve the adversarial training.

Different Attacking Budgets. We present adversarial sam-
ples of FGM attacks with different magnitudes with attack-
ing budget scales as 0.08, 0.008, and 0.0008. And as shown
in Fig. 1 we present the pose transfer results using those
adversarial samples on a trained model (NPT [10]). We can
see that the trained NPT model is very sensitive to the at-
tacks even when the attacking magnitude is small.
Other Domain. We use 3D-PoseMAE to achieve pose
transfer on meshes from different domains than human
meshes, see Fig. 2.
Raw Scans. We present the pose transfer results of our
method and compare the method on raw scans from the
DFAUST dataset as shown in Fig. 3.

References
[1] Federica Bogo, Javier Romero, Matthew Loper, and

Michael J Black. Faust: Dataset and evaluation for 3d
mesh registration. In CVPR, 2014. 1, 3

[2] Federica Bogo, Angjoo Kanazawa, Christoph Lassner,
Peter Gehler, Javier Romero, and Michael J Black.
Keep it smpl: Automatic estimation of 3d human pose
and shape from a single image. In ECCV, 2016. 1, 3

[3] Federica Bogo, Javier Romero, Gerard Pons-Moll,
and Michael J Black. Dynamic faust: Registering hu-
man bodies in motion. In CVPR, 2017. 1, 2, 3

[4] Haoyu Chen, Hao Tang, Zitong Yu, Nicu Sebe, and
Guoying Zhao. Geometry-contrastive transformer for
generalized 3d pose transfer. AAAI, 2021. 1

[5] Xiaoyi Dong, Dongdong Chen, Hang Zhou, Gang
Hua, Weiming Zhang, and Nenghai Yu. Self-robust 3d
point recognition via gather-vector guidance. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 11513–11521, 2020.
3, 4

[6] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.
2

[7] Sida Peng, Junting Dong, Qianqian Wang, Shangzhan
Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao.
Animatable neural radiance fields for modeling dy-
namic human bodies. In ICCV, 2021. 1

[8] Javier Romero, Dimitrios Tzionas, and Michael J.
Black. Embodied hands: Modeling and capturing
hands and bodies together. TOG, 36(6), 2017. 2, 3

[9] Robert W Sumner and Jovan Popović. Deformation
transfer for triangle meshes. TOG, 23(3):399–405,
2004. 2, 3

[10] Jiashun Wang, Chao Wen, Yanwei Fu, Haitao Lin,
Tianyun Zou, Xiangyang Xue, and Yinda Zhang. Neu-

ral pose transfer by spatially adaptive instance normal-
ization. In CVPR, 2020. 1, 2, 3, 4

[11] Chong Xiang, Charles R Qi, and Bo Li. Generating
3d adversarial point clouds. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9136–9144, 2019. 3, 4

