URHand: Universal Relightable Hands

Supplementary Material

1. Demo Video

We provide the supplementary video on our project

page (https://frozenburning.github. io/

projects/urhand), which includes more visual results
and additional discussions of our work. Specifically, it con-
tains:

* Motivation and key features of URHand.

* An animated overview and illustration of the proposed
framework.

* Video comparisons with baseline methods.

* Additional qualitative results with diverse identities, in-
cluding 1) relighting with monochrome directional light,
2) relighting with arbitrary environment map, and 3)
quick personalization from a phone scan with correspond-
ing relighting results with environment maps.

2. Limitation and Future Works

Since we learn global light transport with far-field lighting,
it does not guarantee correct light transport with near-field
lighting. Nevertheless, our work achieves plausible near-
field relighting similarly to [1, 3, 16, 17]. Currently the
quick personalization requires the complete mean texture
of a target hand. Thus, it does not work with a single im-
age. One future work would be inpainting the texture from
a single image to enable single-view relightable hand re-
construction. As our hand model is only driven by hand
poses, it cannot capture appearance variations due to blood
pressure or temperature changes. As recently demonstrated
in [10], photorealistic relightable hands can be used to aug-
ment training data for image-based pose regression tasks.
Using URHand to synthesize large-scale two-hand or hand-
to-object interaction images with diverse identities is also
fruitful.

3. Personalization from a Phone Scan

In this section, we demonstrate how to quickly adapt UR-
Hand to a personalized use case from a phone scan. We
followed the hand avatar creation pipeline of UHM [11]. To
be specific, we use a single iPhone 12 to scan a hand, which
incorporates a depth sensor that can be used to extract bet-
ter geometry of the user’s hand. Our phone scans include
hands with neutral finger poses and static 3D global trans-
lations with varying 3D global rotations to expose most of
the hand surfaces.

We pre-process the phone scan with 1) our in-house 2D
hand keypoint detector to obtain 2D hand joint coordinates
and 2) RVM [7] to obtain the foreground mask of the phone

scan. After the preprocessing, we optimize 3D global ro-
tation, 3D pose, 3D global translation, and ID code of the
phone scan. The 3D global rotation, 3D pose, and 3D global
translation are optimized for each frame, and a single ID
code is shared across all frames as all frames are from a
single identity. We optimize them by minimizing 1) L1 dis-
tance between projected 2D joint coordinates and targets
2) L1 distance between differentiably rendered masks and
targets with weight 50, and 3) L1 distance between differ-
entiably rendered depth maps and targets with weight 100.
After the optimization, we unwrap per-frame images to UV
space and average intensity values at each texel considering
the visibility to get the unwrapped texture map.

To remove shadows from the unwrapped textures, we
first obtain the average color of the foreground pixels of
captured images. Then, we optimize shadow as a 1-channel
difference (i.e., darkness difference) between the averaged
color and the captured image in the UV space. To pre-
vent the shadow from dominating local sharp textures (i.e.,
hairs and tattoos), we apply a total variation regularizer to
the shadow. The unwrapped texture without the shadow is
simply obtained by dividing the unwrapped texture by the
shadow. We empirically observed that such a statistical ap-
proach produces better shadow than the physics-based ap-
proach of HARP [5], which assumes a single point light, as
there is often more than one light source in the scan environ-
ment. Then, we take this texture map after shadow removal
as the input to URHand for relighting without any finetun-
ing. Besides, for more details about the quick hand avatar
creation, please refer to UHM [11].

To demonstrate that our universal relightable prior
achieves generalization beyond the training data, we present
relighting results of phone scan personalization with tattoos
in Figure 1 and Figure 2, where we relight the hand with di-
verse illuminations and poses without retraining URHand.
The subjects were captured only in a neutral pose with an
unknown illumination using a single iPhone 12. This is es-
pecially challenging as the tattoo is an out-of-distribution
appearance from our training data.

Specifically, Figure 1 shows that our relightable hand
prior generalizes to clearly novel identities (with tattoos
which are never observed during training), diverse natural
illuminations, and novel poses (the input phone scans con-
tain only neutral poses) without noticeable artifacts. More-
over, we present relighting results with extreme illumina-
tions as RGB panels in Figure 2 which further demonstrates
the generalizability of URHand to any lighting conditions.
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Figure 1. Relighting results (environment maps) from a phone
scan with tattoos. We capture the hand with tattoos only in a
neutral pose with unknown illumination using a single iPhone 12.
By applying the universal prior of URHand, we can relight the
hand with diverse illuminations and poses without retraining.
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Figure 2. Relighting results (extreme RGB panel lighting) from
a phone scan with tattoos. We capture the hand with tattoos only
in a neutral pose with unknown illumination using a single iPhone
12. By applying the universal prior of URHand, we can even ren-
der the hand in extreme out-of-distribution illuminations.

4. Network Architecture

In this section, we provide the details of our network archi-
tecture and hyperparameters for our hand geometry model
(Sec. 4.1), physical branch (Sec. 4.2), and neural branch
(Sec. 4.3), respectively.

4.1. Hand Geometry Autoencoder

We design an autoencoder [11] to obtain accurate hand
tracking and geometry from input fully lit frames sim-
ilar to [9]. The architecture of this autoencoder
{&id, Dia, £, Dy} is illustrated in Figure 3. Specifically, it
consists of an identity encoder &4, an identity decoder Dyq,
a pose encoder &, and a pose decoder Dy.

The identity encoder &;q takes as input the depth map in
the neutral pose and the coordinates of joints in the neutral
pose, which predicts the mean and variance of the distri-
bution of the identity code (i.e. ID code). The inputs of
the identity encoder have normalized viewpoints by rigidly

aligning them to a reference coordinate system; hence both
pose and viewpoints are normalized and only identity in-
formation is included in them. The identity decoder D;q
learns to decode the identity-dependent offset of joints and
vertices from the ID code z. The identity-dependent offset
of joints is responsible for adjusting 3D joint coordinates in
the template space for each identity, and the offset of ver-
tices are for adjusting 3D vertices in the template space for
each identity. The pose encoder & directly regresses hand
pose 6 from the input image and the coordinates of joints.
The pose decoder Dy learns to predict the pose-dependent
offset of vertices given the pose 6 and ID code z. To get
posed 3D meshes, we apply the three types of correctives to
the template mesh and perform linear blend skinning with
the estimated 3D pose from the pose encoder.

We train this autoencoder {&y, Dy, Eiq, Dia } on fully lit
frames with all identities to obtain a general hand tracker.
The autoencoder is trained by minimizing 1) L1 distance
between joint coordinates, 2) point-to-point L1 distance
from 3D scans with weight 10, 3) KL-divergence of the
ID code with weight 0.001, and 4) various regularizers like
Moon et al. [9]. We freeze it during the training of URHand
as well as the quick personalization from phone scans.

4.2. Physical Branch

The physical branch of URHand consists of a 2D U-
Net [15] Fg and a parametric BRDF [2] F,;,, where only
the U-Net F¢ contains optimizable parameters. The U-Net
encoder is a 6-layer convolutional neural network (CNN)
with channel sizes (3, 64, 64, 64,64, 64, 64), which takes as
input the mean texture 7 € R!024x1024xX3 " To get mean
texture, we project the visible pixels of fully lit images onto
the UV texture map based on the tracked meshes in neu-
tral poses and take the weighted average based on the sur-
face normals across 5 frames. The hand pose 6 is tiled
into a UV-aligned 2D feature map 6’, concatenated with
the output feature from the U-Net encoder as a joint fea-
ture Fy 4, and passed to the U-Net decoder. The U-Net de-
coder is a 6-layer CNN with skip connections from the U-
Net encoder, with channel sizes (64, 64,64, 64, 64,64, 2).
We use a transposed convolution layer followed by bilin-
ear interpolation as the upsampling layer in the U-Net de-
coder. The U-Net decoder predicts the displacement map
§d € R1024x1024 4nq the roughness map 3 € R1024x1024,
We unwrap the coarse mesh M from our hand geometry
autoencoder into the UV space to obtain the corresponding
coarse normal map n € R1924x1024x3 " The predicted dis-
placement map is applied on top of this coarse normal map
to obtain the refined normal map n according to Eq. 2 in
the main paper.

The parametric BRDF F,}, takes as input the refined nor-
mal map n, the roughness map G, light £ = {L;(w;)}s,
and view direction d. The physics-inspired shading features
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Figure 3. The architecture of our hand geometry autoencoder. The identity encoder &iq takes as input the depth map in the neutral
pose and the coordinates of joints in the neutral pose, which predicts the mean and variance of the distribution of the identity code (i.e.
ID code). The identity decoder D;q learns to decode the identity-dependent offset of vertices and skeletons from the ID code z. The pose
encoder &y directly regresses hand pose ¢ from the input image and the coordinates of joints. The pose decoder Dy learns to predict the

pose-dependent offset of vertices given the pose 6 and ID code z.

Fo, = {C‘;b, C3,} are computed accordingly. Specifi-
cally, the diffuse feature Cgb is computed as:

CS, = /Li(wi) Vi (w; - 0)dw;, (D

where L;(w;) is the light intensity from the incident direc-
tion w;, V; is the visibility given the light L;. We adopt a
mesh-based shadow map technique (similar to Relightable-
Hands [3]), which is widely used in Computer Graphics for
real-time rendering. Furthermore, the specular feature C;b
is computed as:

b = /D “F G- Li(w;) - Vi - (w; - 1)dw;, (2)
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where we set Fresnel coefficient Fy, = 0.04, A\py =
—5.55473, and Apo = —6.98316, respectively.

4.3. Neural Branch

The neural branch of URHand consists of a non-linear
network Fy; and a linear network JF; (i.e. linear light-
ing model). We illustrate the detailed architecture of
the neural branch in Figure 4. Specifically, the non-
linear network JF,; is a 7-layer CNN with channel sizes
(128,256,128, 128, 64,32, 16,4), which takes as input the
pose- and identity-dependent joint feature Fg ;. The linear
network F1, namely the linear lighting model, consists of an
encoder F_.nc and a decoder Fj_gec. The linear encoder
Fenc consists of unbiased convolutional layers which takes
as input the concatenated physics-inspired shading features
{ Czb, o)+ The linear decoder is a 7-layer unbiased CNN
with channel sizes (128,256, 128,128, 64,32,16,4). We
fuse the linear features from Jj_.,. and the non-linear fea-
tures from J, as layer-wise modulation at each layer of the
linear decoder Ji_g4ec according to Eq. 5 in the main paper.
The predicted gain map g € R1024x1024X3 anq bias map
b € R1024x1024 contributes to the final rendering according
to Eq. 6 in the main paper.

5. Implementation of Baselines

In this section, we present implementation details of our
baseline methods for comparisons in the main paper.
Specifically, we introduce our modifications to Relightable-
Hands [3] and Handy [12] in Sec. 5.1. Moreover, we intro-
duce our implementations of all baselines for ablation stud-
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Figure 4. The architecture of the neural branch of URHand.
The neural branch of our model consists of a non-linear network
Fn1 and a linear network F; (i.e. linear lighting model). Notably,
we remove all non-linear activation and use the convolutional layer
without bias in the linear network so that the linearity of the output
is explicitly kept w.r.t. the input physics-inspired shading feature
{Cgb, Cp,}. This figure also illustrates how Eq. 5 in the main
paper is implemented within our network.

ies in Sec. 5.2.

5.1. Methods for Main Comparisons

RelightableHands [3] is originally proposed for per-
identity relightable appearance reconstruction tailored with
volumetric representation [8]. For a fair comparison, we re-
implement it with our mesh-based representation. Specif-
ically, we leverage a U-Net as the texture decoder Aycx
that takes as input the UV-aligned view direction, light di-
rection, and visibility. The pose parameter is tiled into a
UV-aligned feature map and concatenated with the bottle-
neck representation of the U-Net. This texture decoder Aycx
predicts texture map T € R1024x1024x3 apnd shadow map
S € R1924x1024 jp the UV space. The final texture C for

rendering is obtained as:
C = 0o(S)(ReLU(AsT) + Xp), @)

where o (-) is the sigmoid function, ReL.U(x) = max(0, x),
s is a scale factor, and )\ is a bias parameter. In our exper-
iments, we set A, = 25, and A; = 100, respectively.
Handy [12] leverages the parametric hand model [14] as
the shape representation and StyleGAN3 [4] as the texture
model. As the shape and latent code regressor are not pub-
licly available, we cannot infer the latent code w or shape
parameters from input images as in the original paper. In-
stead, we fit hand shape parameters using our multiview
fully lit frames on the training segments. Then, we do the
StyleGAN inversion following [13]. Specifically, we ran-
domly initialize the latent code w and optimize it given the
reconstruction loss between the ground truth fully lit images
and the images rendered with the current predicted texture
map. In our experiments, we optimize 50,000 iterations for
each identity. We use the Adam [6] optimizer with the ini-
tial learning rate as 1< 10~3. Once the inversion is done, we
take the latent code w and feed it into the pretrained texture
model of Handy to get the unwrapped texture map. We treat
the unwrapped texture map as the albedo map for physically
based relighting evaluation.

5.2. Baselines for Ablation Studies

Non-linear model is based on our full model but we add
LeakyReLU function to all layers in the original linear net-
work F] which breaks the linearity.

Linear consistency model is based on the aforementioned
non-linear model. We additionally constrain the linearity
of this non-linear network by applying linearity consistency
loss during training. Specifically, for every n iterations,
we augment two physics-inspired shading features with two
random scalars, i.e. alFll)b + agng, where a1, as € (0,1).
The linearity consistency loss is defined as:

Lic = |la1Fi(Fpp) + a2 Fi(Fop) — Fi(a1Fpy + a2Fop) |2 (8)

MLP-based linear model [18] is a variant of the linear
lighting model with no spatially varying lighting feature.
We replace the encoder of linear network JFj_q,. as a one-
layer MLP without bias. It takes as input the environment
map with a resolution of 3 x 16 x 32, and predicts the
lighting feature. Then we reshape the prediction into a UV-
aligned feature map with a resolution of 128 x 16 x 16 and
feed into the decoder of linear network to predict the final
gain and bias map for neural rendering.

Phong based model is implemented by replacing our
physics-inspired shading feature Fp, = {Cgb, C;,} with
simple diffuse and specular feature from the Phong re-
flectance model. This neural relighting model is similar
to [1, 3] with no learnable material parameter.



w/o Specular is the baseline where we dropout the specular
feature C7,, during training.

w/o Visibility is the baseline where we do not incorporate
visibility V; when compute the physics-inspired shading
feature in Eq. 1 and Eq. 2.

w/o Refiner is the baseline where we only use the normal
map n from the coarse geometry without further refinement
during training.

w/o Lcan is the baseline trained with the reconstruction
loss Limg and L1 regularization L.z only.

w/o Light-aware Lcan is the baseline trained with the
vanilla adversarial loss without conditional discriminator.
Specifically, the adversarial loss of Eq. 8 in the main paper
degrades to Lgan = log Fp(I) +log[1 — Fp (1)), where I
is the ground truth and I is the rendered image.

w/o L1 Reg is the baseline trained with the reconstruction
loss Lime and lighting-aware adversarial loss Lgan only.
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