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1. Further Details for VPO Dataset

1.1. Dataset Statistics

We show the distribution of visual classes in VPO-SS,
VPO-MS and VPO-MSMI in Figure 1. Similar to the
AVSBench-Semantics [29], we also observe a data imbal-
ance issue within our VPO dataset. We follow [25] to re-
port an imbalance ratio (Nmax

Nmin
) of 12.48% (female & zebra),

12.43% (female & zebra) and 12.62% (female & cow) on
the three VPO subsets, and 59.57% (man & axe & missile-
rocket) on AVSBench-Semantics [29]. These class imbal-
ance issues can affect the model performance during testing,
which will be discussed in Sec. 3.3. For the demonstration
of training examples, please refer to the “video demo.mp4”
file within the supplementary materials.

1.2. Creation Procedure

We show a graphical illustration of our Visual Post-
production (VPO) benchmark in Fig. 2. We divide the entire
dataset generation process into three major steps:

• Data collection: We gather datasets from off-the-shelf
segmentation datasets (e.g., COCO [15]) and audio
datasets (e.g., VGGSound [2]), focusing on the overlap-
ping classes listed in Tab. 1. We randomly match audio
and video files to form new samples based on their se-
mantic labels.

• Data processing: We prioritise the collection of images
with multiple objects and incorporate spatial location in-
formation based on each selected instance mask.

• Subset creation: We organize subsets according to
their keywords (e.g., single-source, multi-sources, multi-
instances) and further partition each subset into training
and testing sets.

*First two authors contributed equally to this work.

Table 1. Detailed lookup table correlating audio tags with visual
labels in the VPO creation process.

Visual-label Audio-label
bird mynah bird singing

keyboard typing on computer keyboard
bus driving buses

cat
cat purring / cat purring

cat meowing / cat caterwaulin

dog
dog growling / dog bow-wow

dog whimpering / dog howling
dog barking / dog baying

horse horse neighing / horse clip-clop

car

car passing by / car engine idling
car engine starting

race car, auto racing
car engine knocking

sports ball shot football
airplane airplane / airplane flyby
sheep sheep bleating
cow cow lowing

motorcycle driving motorcycle
mouse mouse clicking

cell phone cell phone buzzing
elephant elephant trumpeting

zebra zebra braying
tennis racket playing tennis
skateboard skateboarding

male
male speech, man speaking

male singing
female female speech, woman speaking

baby
baby babbling / baby crying

baby laughter

1.3. Strengths and Weaknesses of VPO

As we discussed in the main paper, our VPO dataset enjoys
the following strengths:
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(a) VPO-SS (b) VPO-MS (c) VPO-MSMI
Figure 1. Visual class distribution in our proposed VPO-SS, VPO-MS and VPO-MSMI benchmark datasets.
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Figure 2. Illustration of VPO collection and production process.

• Cost-effectiveness. The manually labelled AVS dataset
needs annotators to watch and listen to an entire video so
they can provide labels. The VPO production process can
significantly reduce such annotation costs.

• Data scalability. We can easily increase the amount of
data by leveraging existing visual (ADE20K [27], Pascal
VOC [6], etc.) and audio (AudioSet [8], ESC-50 [23],
etc.) datasets.

• More diverse scenarios. In our proposed VPO datasets,
every object within the scene will have a chance to
be the sounding object, which is crucial to mitigate
the “commonsense” bias that is observed in AVSBench-
Semantics [29] and addressing the assessment of spurious
correlation [1, 5, 19].

• Isolation of motion information. The disentanglement of
motion and sound in our VPO benchmark prevents the
model from solely relying on motion information to make
predictions, encouraging the learning and evaluation of

cross-modal alignment [24].
• Introduction of stereo audio. The use of stereo audio en-

courages the study of spatial prompts.
We also identified the following weaknesses of VPO:
• Data imbalance issue. Such imbalance can affect the seg-

mentation accuracy, particularly for the tail classes.
• Lack of temporal image data. Since we match still im-

ages with audio, we cannot use image motion informa-
tion.

• Comprehensive simulations of spatial audio. Our VPO
does not include the modelling of arrival time differences
and microphone distance.

2. Experiments

2.1. Implementation Details

Training & Inference: During training, we apply data
augmentation for image inputs with colour jitter, horizon-
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Figure 3. Qualitative results for cross-attention heatmap on AVSBench-Semantics [29].

(a) Ground Truth (b) Softmax (c) Min-max (d) Sigmoid
Figure 4. Visualisation of attention map process by Softmax and Sigmoid activation.

(a) Without CAVP (b) With CAVP
Figure 5. T-SNE visualisation of features after cross-attention fusion layer, trained with or without our CAVP.

tal flipping and random scaling between 0.5 to 2.0. We
randomly crop images to 512 × 512 pixels. For the au-
dio data, we extract the log Mel-Spectrogram with 64 mel
filter banks over 1s [28] or 3s [22] of the waveform at
16 kHz on AVSBench and VPO. We set temperature τ as
0.1. We use the SGD optimizer with a momentum of 0.9,
weight decay of 0.0005, and a polynomial learning-rate de-
cay (1− iter

total iter )
power with power = 0.9. The initial learning

rate is set to 0.001, the mini-batch size is 16 and training
lasts for 80 epochs. During inference, we use the origi-
nal resolution resizing and cropping with a mini-batch size
of 1. We adopt two image backbones (ResNet [10], PVT-
V2-B5 [26]) and DeepLabV3+ [4] for the segmentation
network. For the audio backbones, we use VGGish [12]
(following [28]) and ResNet-18 [10] (following [3, 22])
for AVSBench and VPO, respectively. The overwhelming
amount of negative samples is mitigated by maintaining a
memory bank [11] to store raw waveform data for each
class. During training, we proportionally transfer negative
pairs from the negative set to the positive set by pairing pos-
itive audio with respect to the image label.

3. Attention Map Visualisation

To demonstrate the effectiveness of our cross-attention
module, we visualize the audio-visual attention
heatmap. We employ models pre-trained on AVSBench-
Semantics [29], utilizing a full-resolution set-up and
equipped with a ResNet50 [10] backbone. As shown
in Fig. 3, the heatmaps illustrate that our module can
effectively retrieve the foreground object by leveraging
the interaction between audio and visual embeddings.
Additionally, we show a visual comparison amount of the
application of softmax(.), Minmax(.) and sigmoid(.)
activation functions. As depicted in Fig. 4, using Softmax
under spatial dimension may lead to a diminished attention
map (Fig. 4b), while incorporating Minmax activation over
the dot product of the audio-visual feature could yield a
noisy and limited discernment of relevant audio-visual
correspondences. (Fig. 4c). Our method in Fig. 4d, utiliz-
ing sigmoid(.), demonstrates a better efficacy compared
to these two methods in terms of cross-modal feature
activation.



Table 2. Quantitative (mIoU, Fβ) audio-visual segmentation results (in %) on AVSBench dataset [28, 29] (resized to 224×224) with
PVT-V2-B5 [26] backbone. The best results are in bold and the second best are underlined.

PVT-V2-B5 [26] Method AVSBench-Object (SS) AVSBench-Object (MS) AVSBench-Semantics
mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑

Transformer

CATR [14] 81.40 89.60 59.00 70.00 32.80 38.50
AuTR [18] 80.40 89.10 56.20 67.20 - -

AQFormer [13] 81.60 89.40 61.10 72.10 - -
AVSegFormer [7] 82.06 89.90 58.36 69.30 36.66 42.00

AVSC [16] 80.57 88.19 58.22 65.10 - -
BAVS [17] 81.96 88.60 58.63 65.49 32.64 36.42

Per-pixel Classification

TPAVI [28] 78.74 87.90 54.00 64.50 29.77 35.20
AVSBG [9] 81.71 90.40 55.10 66.80 - -

ECMVAE [21] 81.74 90.10 57.84 70.80 - -
DiffusionAVS [20] 81.38 90.20 58.18 70.90 - -

Ours 87.33 (+5.27) 93.61 (+3.41) 67.31 (+6.21) 78.09 (+5.99) 48.59 (+11.93) 61.97 (+19.97)

Table 3. Quantitative (mIoU, Fβ , FDR) audio-visual segmentation results (in %) on VPO dataset with ResNet50 [10] backbone and mono
audio. Best results are in bold, and second best areunderlined. Improvements against the second best are in the last row.

D-ResNet50 [10] Method VPO (SS) VPO (MS) VPO (MSMI)
mIoU ↑ Fβ ↑ FDR ↓ mIoU ↑ Fβ ↑ FDR ↓ mIoU ↑ Fβ ↑ FDR ↓

Transformer AVSegFormer [7] 52.96 67.89 25.50 56.46 71.89 24.66 50.96 64.96 32.72

Per-pixel Classification TPAVI [28] 51.84 68.77 23.64 44.08 58.14 30.82 50.37 66.80 29.82
Ours 61.48 75.53 18.79 61.85 74.60 20.24 57.22 72.26 24.04

Improvements Ours +8.52 +6.76 -4.85 +5.39 +2.71 -4.42 +6.26 +5.46 -5.78

3.1. T-SNE Visualisation

To present the qualitative results of our CAVP method in
the latent space, we extract the features computed before the
classification layers, and generate T-SNE plots in Fig. 5. We
employ models pre-trained on AVSBench-Semantics [29],
utilizing a full-resolution set-up and equipped with a
ResNet50 [10] backbone. We consider both scenarios:
with the proposed CAVP method (Fig. 5b) and without it
(Fig. 5a). The results demonstrate that our method can en-
hance intra-class compactness while preserving intra-class
separability.

3.2. Additional Results on Resized AVSBench

We follow previous methods [7, 9, 13, 14, 16–18, 20, 21, 28]
to evaluate our model with PVT-V2-B5 [26] backbone
on AVSBench-Objects (SS & MS) [28] and AVSBench-
Semantics [29] with resized image resolution (224×224).
The results in Tab. 2 show that we improve mIoU by 5.27%,
6.21% and 11.93% on the respective three benchmarks.

3.3. Additional Results

We present supplementary results for the paper, showcas-
ing the performance of AVSegformer [7], TPAVI [28], and
our model on VPO with mono audio with ResNet50 [10]
backbone, as depicted in Tab. 3. Our method outperforms
the baseline methods on all experimental settings by a min-
imum of 5.39%, 2.71% and 4.42% for mIoU, Fβ score and
false detection rate, respectively. We also provide class-
wise results on AVSBench-Semantics [29] in Tables 4,5,6.
We observe that the tail classes, such as clippers, axe,

missile-rocket and utv, show significantly worse results than
the remaining classes, illustrating the importance of ad-
dressing the imbalance issue in the AVS task.

 Mono CAVP

 Stereo CAVP

 Image

 GT

Figure 6. Visual comparison between CAVP models trained with
mono audio and stereo audio.

To showcase the model’s performance with both mono
and stereo audio inputs, we opted for two CAVP models
utilizing the ResNet50 [10] backbone. Trained on VPO-
MSMI, these models were chosen to assess prediction out-
comes in multi-instance scenarios, illustrated in Fig. 6. Our
observations reveal that, when aided by stereo audio, the
model effectively diminishes its focus on the incorrect spa-
tial direction. However, challenges persist in handling im-
ages with multiple instances, exemplified in the last column
(depicting two dogs) of Fig. 6. This underscores a signifi-
cant challenge in the audio-visual segmentation (AVS) task.

To further demonstrate the effectiveness of our VPO
dataset, we used the TPAVI [28] trained on VPO and applied
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Figure 7. Visual comparison between TPAVI models trained on
AVSBench [28] (2nd row) and VPO (3rd row), using an identical
set of synthetic test samples. The columns display the original
audio (1st column) and alternative sound types, including a person
speaking (2nd column), bird chirping (3rd column), or background
noise (4th column).

it to test the synthetic examples, shown in Fig. 7. Despite
hallucinations persisting in the 3rd column (class “Bird”),
there is a noticeable improvement, with the correct segment
of “Helicopter”, “Male”, and “Noise”, compared to the re-
sults in the 2nd row.

Finally, we show a qualitative comparison visualization
among TPAVI [28], AVSegFormer [7], and our CAVP on
VPO in Fig. 8 and on AVSBench-Semantics in Fig. 9. We
demonstrate that our method consistently provides a more
effective approximation of the true segmentation of ob-
jects in the scene compared to alternative methods. For
the demonstration of full video examples on AVSBench-
Semantics, please refer to the “video demo.mp4” file
within the attached supplementary materials.
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Figure 8. Qualitative audio-visual segmentation results on VPO by TPAVI [28], AVSegFormer [7], and our CAVP. The prediction results
can be compared with the ground truth (GT) of the first row of each sample.
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Figure 9. Qualitative audio-visual segmentation results on AVSBench-Semantics [29] by TPAVI [28], AVSegFormer [7], and our CAVP.
The prediction results can be compared with the ground truth (GT) of the first row of each video.



Table 4. Class-level (mIoU) audio-visual segmentation results (in %) on AVSBench-Semantic dataset [29] (original resolution) with
ResNet50 [10] backbone.

Class background accordion airplane axe baby bassoon bell bird boat boy bus car cat cello clarinet
AVSegformer 0.9093 0.8610 0.9003 0.0000 0.4178 0.1683 0.0618 0.2251 0.7751 0.0130 0.4240 0.2800 0.3952 0.4553 0.0033

TPAVI 0.9111 0.7484 0.9261 0.0000 0.4147 0.1578 0.0795 0.3814 0.7149 0.0251 0.7019 0.4214 0.5209 0.4537 0.1624
CAVP 0.9168 0.9229 0.9291 0.0000 0.4212 0.2580 0.3376 0.2481 0.8096 0.1194 0.3486 0.3786 0.4968 0.5490 0.0180
Class clipper clock dog donkey drum duck elephant emergency-car erhu flute frying-food girl goose guitar

AVSegformer 0.0000 0.5482 0.2847 0.3876 0.0288 0.5581 0.8649 0.5377 0.2396 0.2287 0.5187 0.1163 0.2171 0.7520
TPAVI 0.0000 0.4179 0.2329 0.1913 0.3180 0.4620 0.7492 0.5342 0.3697 0.3134 0.4161 0.1737 0.0054 0.7203
CAVP 0.0000 0.7088 0.3259 0.4141 0.2987 0.5154 0.7597 0.6329 0.5898 0.3358 0.4761 0.1691 0.6841 0.8172
Class gun guzheng hair-dryer handpan harmonica harp helicopter hen horse keyboard leopard lion man marimba

AVSegformer 0.2456 0.4480 0.4926 0.8611 0.0000 0.6583 0.6952 0.1423 0.1709 0.7823 0.6721 0.7946 0.4050 0.8194
TPAVI 0.2355 0.4999 0.6422 0.7801 0.0000 0.5573 0.7185 0.2600 0.3104 0.7592 0.6018 0.7331 0.4229 0.8223
CAVP 0.3059 0.5587 0.6075 0.8885 0.0000 0.6473 0.7762 0.7078 0.2506 0.7800 0.6797 0.8328 0.4300 0.8392
Class missile-rocket motorcycle mower parrot piano pig pipa saw saxophone sheep sitar sorna squirrel tabla

AVSegformer 0.0000 0.0501 0.6662 0.1493 0.6031 0.2891 0.5213 0.2953 0.3404 0.0837 0.4364 0.2090 0.4190 0.6088
TPAVI 0.1086 0.0106 0.6237 0.1239 0.5406 0.2505 0.6602 0.4154 0.4560 0.0507 0.5225 0.6431 0.4567 0.6963
CAVP 0.0000 0.1063 0.6487 0.1158 0.6178 0.6247 0.6518 0.5625 0.5141 0.1069 0.6552 0.4723 0.6357 0.6383
Class tank tiger tractor train trombone truck trumpet tuba ukulele utv vacuum-cleaner violin wolf woman

AVSegformer 0.3381 0.5467 0.4995 0.8996 0.4133 0.2434 0.3514 0.7967 0.5930 0.0000 0.1720 0.4008 0.7839 0.3837
TPAVI 0.4718 0.5849 0.4586 0.8529 0.4425 0.1831 0.2631 0.7744 0.5388 0.0000 0.1558 0.5302 0.6924 0.4285
CAVP 0.6514 0.6226 0.4922 0.9427 0.6415 0.1948 0.3839 0.8249 0.7038 0.0000 0.5680 0.6005 0.8510 0.4157

Table 5. Class-level (Fβ) audio-visual segmentation results (in %) on AVSBench-Semantic dataset [29] (original resolution) with
ResNet50 [10] backbone.

Class background accordion airplane axe baby bassoon bell bird boat boy bus car cat cello clarinet
AVSegformer 0.9484 0.9395 0.9488 0.0000 0.5795 0.4054 0.1657 0.2971 0.8914 0.0351 0.5099 0.3539 0.5359 0.6597 0.0129

TPAVI 0.9445 0.8090 0.9581 0.0000 0.6223 0.4018 0.2440 0.5241 0.8458 0.0786 0.8474 0.5883 0.7307 0.6560 0.3185
CAVP 0.9528 0.9579 0.9505 0.0000 0.6393 0.5019 0.5094 0.3887 0.8846 0.2930 0.4237 0.4606 0.6165 0.7143 0.0535
Class clipper clock dog donkey drum duck elephant emergency-car erhu flute frying-food girl goose guitar

AVSegformer 0.0000 0.7194 0.4178 0.6265 0.0956 0.7510 0.9100 0.6769 0.5244 0.3931 0.7594 0.2153 0.4183 0.8626
TPAVI 0.0000 0.6666 0.4233 0.4442 0.6056 0.6664 0.8798 0.7391 0.6092 0.5772 0.7110 0.3057 0.0105 0.8266
CAVP 0.0000 0.8454 0.5669 0.6258 0.5230 0.7024 0.8076 0.7269 0.7465 0.6553 0.7321 0.2821 0.8127 0.9053
Class gun guzheng hair-dryer handpan harmonica harp helicopter hen horse keyboard leopard lion man marimba

AVSegformer 0.4728 0.7464 0.5995 0.9431 0.0000 0.7688 0.8334 0.3946 0.2563 0.8703 0.7653 0.8616 0.5782 0.9098
TPAVI 0.5106 0.7231 0.7612 0.9119 0.0000 0.7621 0.8379 0.5141 0.4684 0.8806 0.7856 0.8201 0.6245 0.9119
CAVP 0.5433 0.7352 0.6854 0.9427 0.0000 0.7616 0.8725 0.8698 0.3430 0.8783 0.7884 0.8958 0.6217 0.9223
Class missile-rocket motorcycle mower parrot piano pig pipa saw saxophone sheep sitar sorna squirrel tabla

AVSegformer 0.0000 0.1409 0.8527 0.3047 0.7714 0.3990 0.7633 0.4944 0.5863 0.2197 0.7148 0.4113 0.6475 0.7012
TPAVI 0.2028 0.0316 0.8035 0.2810 0.7535 0.4973 0.8320 0.6863 0.7137 0.1161 0.7707 0.8317 0.6656 0.7887
CAVP 0.0000 0.2981 0.8605 0.2403 0.8134 0.7346 0.8311 0.8037 0.7085 0.2074 0.8023 0.5639 0.7770 0.7387
Class tank tiger tractor train trombone truck trumpet tuba ukulele utv vacuum-cleaner violin wolf woman

AVSegformer 0.6493 0.6707 0.6241 0.9607 0.6450 0.5623 0.6298 0.9178 0.7482 0.0000 0.2465 0.5906 0.8749 0.5682
TPAVI 0.7202 0.7762 0.5412 0.9239 0.6158 0.4848 0.4430 0.8686 0.7479 0.0000 0.2122 0.7115 0.8528 0.6369
CAVP 0.8315 0.7188 0.5650 0.9710 0.7491 0.4830 0.6486 0.8840 0.8353 0.0000 0.6977 0.7634 0.9193 0.6123

Table 6. Class-level (FDR) audio-visual segmentation results (in %) on AVSBench-Semantic dataset [29] (original resolution) with
ResNet50 [10] backbone.

Class background accordion airplane axe baby bassoon bell bird boat boy bus car cat cello clarinet
AVSegformer 0.0550 0.0479 0.0502 0.0000 0.4288 0.3772 0.7397 0.7448 0.0926 0.9487 0.5460 0.6959 0.4878 0.3081 0.9300

TPAVI 0.0631 0.2274 0.0449 0.0000 0.3432 0.3230 0.4422 0.4977 0.1435 0.8376 0.1323 0.4156 0.2250 0.3140 0.6382
CAVP 0.0505 0.0437 0.0601 0.0000 0.3147 0.3791 0.4865 0.6186 0.1240 0.5693 0.6331 0.5954 0.4191 0.2809 0.9047
Class clipper clock dog donkey drum duck elephant emergency-car erhu flute frying-food girl goose guitar

AVSegformer 1.0000 0.2708 0.6018 0.3006 0.7584 0.2165 0.1045 0.3412 0.2448 0.5871 0.1603 0.7783 0.5090 0.1339
TPAVI 1.0000 0.2492 0.5280 0.3382 0.2250 0.3010 0.0993 0.2199 0.3155 0.2966 0.1332 0.6854 0.9897 0.1824
CAVP 1.0000 0.1405 0.3474 0.3350 0.4075 0.2775 0.2348 0.3099 0.2496 0.1147 0.1721 0.7238 0.1870 0.0896
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