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A. Appendix Section
The supplementary material mainly includes the following
contents:
• The specific structure of certain used networks.
• The complete structure of the proposed unsupervised

framework.
• More detailed explanations of the experiments mentioned

in the main document.
• Additional visual comparisons with advanced unsuper-

vised methods.

B. Architecture of the Generator
The structure of the generator used in our network is shown
in Fig. 1. Specifically, within the generator, we first extract
sharp image features through sharp feature extraction, which
are then combined with blurry features obtained from the
DGIG module and passed through six residual blocks. Each
residual block consists of two 3 × 3 convolution layers
with ReLU activation function. Finally, these features are
processed through four convolution layers to synthesize the
final blurry image.
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Figure 1. The architecture of the generator.

C. Architecture of the Discriminator
In our network, we use Patch-GAN [11] as the discriminator,
as shown in Fig. 2. The input to the discriminator is an image
of size 128 × 128, starting with a 4 × 4 convolution layer
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Figure 2. The architecture of the discriminator.

with ReLU activation function. This is followed by three
intermediate layers, each of which adds instance normaliza-
tion between the convolution layer and the ReLU activation
function, and ending with a 4 × 4 convolution layer with a
stride of 1. Despite its simplicity, this discriminator structure
is capable of focusing on each pixel in the image, leading to
more effective training. The adversarial training between the
discriminator and the generator ensures that the synthesized
blurry images are close to real-world situations.

D. Complete Structure of SEMGUD

In the main document, we describe our multi-generator un-
supervised deblurring (MGUD) framework for real world
images in detail. In the supplementary material, we elabo-
rate on the implementation of the self-enhancement strategy
based on the original MGUD, as shown in Fig. 3. By fix-
ing the reconstructor obtained from the previous training
iteration at the input end of the DGIG module, we acquire
better degradation guidance information and generate bet-
ter pseudo-paired data, which further train and refine the
reconstructor. Note that, for training stability and fast con-
vergence, we train initial reconstructor weights using the
synthetic dataset generated by the kernel estimation network
exploited in the main document. After that, the initial re-
constructor is used in the real image deblurring framework
without the need of real-paired data. As described in the
main document, our self-enhancement strategy significantly
enhances the reconstructor’s performance without the need
to alter the network’s architecture or increase inference com-
putational complexity.
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Figure 3. Self-Enhancement Multi-Generator Unsupervised Deblurring (SEMGUD) framework. The whole framework employs four
generators and discriminators and uses NAFNet [1] as a reconstructor. The red arrows represent the backbone of SEMGUD, and the blue
arrows, purple arrows, and green arrows respectively represent the different generator complementary constraint modules GECM-1,
GECM-2, and GECM-3. DGIG Module denotes the degradation guidance information generation module. R̄ec denotes using the fixed
reconstructor trained in the last round at the input of DGIG to synthesize better pseudo-paired data.

E. More Explanation of Ablation Study

Effectiveness of Re-Degradation Principal Component
Consistency Loss. In the main document, we conduct a
detailed ablation study of the re-degradation principal com-
ponent consistency RPC2 loss, and the results are shown in
Table 1. The KE denotes the blur kernel estimation network,
ϕ denotes the kernel size of the Gaussian filter operator,
and ωϕ denotes the weights for different values of Gaussian

kernels within each set of ϕ. To identify the optimal com-
bination, we experiment with three sets of values for ϕ and
two sets for ωϕ. We ultimately find that the reconstructor
achieves the best performance when ϕ is set to 3, 5, and 7,
and ωϕ to 1, 0.1, and 0.01. Additionally, the table reveals
that using the blur kernel estimation network effectively
enhances the reconstructor’s performance.

KE ϕ ωϕ GoPro HIDE
3,5, and 7 3,7, and 9 3,9, and 15 1,0.2, and 0.04 1,0.1, and 0.01 PSNR↑ SSIM↑ PSNR↑ SSIM↑

% " % % % " 28.54 0.919 27.25 0.881
" % % " " % 28.72 0.921 27.39 0.885
" % % " % " 28.83 0.923 27.48 0.888
" % " % " % 28.89 0.922 27.54 0.890
" % " % % " 28.97 0.924 27.63 0.892
" " % % " % 29.00 0.925 27.64 0.892
" " % % % " 29.06 0.927 27.64 0.892

Table 1. Ablation study on the hyperparameters ϕ and ωϕ of the RPC2 loss. The first column notes whether the kernel estimation network
is used.
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Figure 4. Visual comparisons on the GoPro dataset. From left to right: blurry image, results from CycleGAN [11], UIDGAN [3], USR-DA
[8], FCLGAN [10], UAUD [7], SEMGUD (ours), and ground-truth.

F. More Visual Comparison Results

We provide additional visual comparisons on benchmark
datasets in Figs. 4 - 12. We compare our SEMUGUD method
with several recent state-of-the-art unsupervised image de-
blurring methods, including CycleGAN [11], UIDGAN [3],
USR-DA [8], FCLGAN [10], and UAUD [7]. Since the
USDF [2] code is not publicly available at this time, its
visual results are not included.

From Figs. 4, 5, and 6, we can observe that the proposed
method reconstructs more high-frequency textures on GoPro
[4] dataset. In Figs. 7 and 8, it is evident that our method
can restore more natural physical characteristics on HIDE
[6] dataset. As shown in Figs. 9 and 10, our method achieves
good results in removing motion blur on RealBlur [5] dataset.
In addition, we also compare the visual results on the RWBI
[9] dataset, which contains only real-world blurry images
without ground truth. From Figs. 11 and 12, we can see that
our method is effective in eliminating real-world blur. We
also observe that existing unsupervised methods tend to be
ineffective in deblurring more severe motion blur.
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Figure 5. Visual comparisons on the GoPro dataset. From left to right: blurry image, results from CycleGAN [11], UIDGAN [3], USR-DA
[8], FCLGAN [10], UAUD [7], SEMGUD (ours), and ground-truth.
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Figure 6. Visual comparisons on the GoPro dataset. From left to right: blurry image, results from CycleGAN [11], UIDGAN [3], USR-DA
[8], FCLGAN [10], UAUD [7], SEMGUD (ours), and ground-truth.
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Figure 7. Visual comparisons on the HIDE dataset. From left to right: blurry image, results from CycleGAN [11], UIDGAN [3], USR-DA
[8], FCLGAN [10], UAUD [7], SEMGUD (ours), and ground-truth.
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Figure 8. Visual comparisons on the HIDE dataset. From left to right: blurry image, results from CycleGAN [11], UIDGAN [3], USR-DA
[8], FCLGAN [10], UAUD [7], SEMGUD (ours), and ground-truth.
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Figure 9. Visual comparisons on the RealBlur dataset. From left to right: blurry image, results from CycleGAN [11], UIDGAN [3], USR-DA
[8], FCLGAN [10], UAUD [7], SEMGUD (ours), and ground-truth.
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Figure 10. Visual comparisons on the RealBlur dataset. From left to right: blurry image, results from CycleGAN [11], UIDGAN [3],
USR-DA [8], FCLGAN [10], UAUD [7], SEMGUD (ours), and ground-truth.
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Figure 11. Visual comparisons on the RWBI dataset. From left to right: blurry image, results from CycleGAN [11], UIDGAN [3], USR-DA
[8], FCLGAN [10], UAUD [7], and SEMGUD (ours).
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Figure 12. Visual comparisons on the RWBI dataset. From left to right: blurry image, results from CycleGAN [11], UIDGAN [3], USR-DA
[8], FCLGAN [10], UAUD [7], and SEMGUD (ours).


