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1. More Details about Datasets
Details of the seven public datasets are provided in their cor-
responding papers. Regarding the private dataset, it com-
prises 122 contrast-enhanced CT images from patients un-
dergoing urinary system examinations. The images have a
uniform matrix size of 512 ⇥ 512, with a variable number
of 2D slices ranging from 62 to 685. Pixel spacing ranges
from 0.607 to 0.977 mm, and slice thickness varies from
1.0 to 3.0 mm. Urologists annotated the kidney, bladder,
and ureters in each image. For this study, only the masks of
the two kidneys and the bladder were retained.

2. More Details about Network Architecture
Table 10 presents the architecture for 3D TransUNet. The
structure of 3D TransUNet is asymmetric, featuring a
greater number of layers in the encoder compared to the
decoder. Both the encoder and decoder are composed of 5
stages, wherein spatial sizes progressively decrease by 50%
from stage 1 to stage 5 in a sequential manner.

The network’s building blocks are shown in brackets. All
blocks, except those in stage 5, comprise two consecutive
convolutional layers. The adjacent pair of numbers within
each bracket represent the input channels and output chan-
nels of a convolutional layer. A skip connection [4] is added
when the input channels of the first convolutional layer is
different from the output channels of the second convolu-
tional layer within each building block in stages 1–4. In ac-
cordance with [2], we employed weight normalization [1] in
every convolutional layer to expedite training. Subsequent
to each convolution operation, instance normalization [3]
and rectified linear unit activation are applied. Downsam-
pling and upsampling are executed through trilinear inter-
polation.

At the bottleneck, four multi-head attention layers were
incorporated, each with eight heads. The size of each atten-
tion head for query, key, and value was set to be 512.

3. More Results on Partially Labeled Data
Effect of patch size. We conducted experiments with two
different patch sizes, namely 96⇥ 96⇥ 96 and 112⇥ 112⇥
112. Larger patch sizes were not explored due to limita-
tions in GPU memory. As indicated in Table 11, employing
a patch size of 96 ⇥ 96 ⇥ 96 resulted in an average DSC
of 87.9%, which is 0.8% DSC lower than the performance
achieved with a patch size of 112⇥ 112⇥ 112. These find-
ings underscore the advantageous impact of using a larger

Table 10. Network architecture.

Encoder Decoder
Stage 1 {1, 32, 64} {128, 64, 64}

Stage 2 {64, 64, 128} {128, 64, 64}
{128, 128, 256}

Stage 3
{256, 128, 256} {512, 64, 64}
{256, 128, 256}
{256, 128, 512}

Stage 4

{512, 256, 512} {1024, 256, 256}
{512, 256, 512}
{512, 256, 512}
{512, 256, 1024}

Stage 5 {1024, 512} {512, 512}

patch for abdominal organ segmentation, since increased
patch size contributes to a more comprehensive inclusion
of contextual information.

Table 11. Performance trained with different patch sizes.

Patch Size DSC [%]

96⇥ 96⇥ 96 87.9±8.1

112⇥ 112⇥ 112 88.7±7.0

Effect of voxel spacing. In our experiments, we standard-
ized the voxel spacing for all images to facilitate model
training. To assess the influence of voxel spacing on model
performance, we conducted experiments with three differ-
ent voxel spacings: 1.5 ⇥ 1.5 ⇥ 1.5 mm3, 2.0 ⇥ 2.0 ⇥ 2.0
mm3, and 2.5 ⇥ 2.5 ⇥ 2.5 mm3. As indicated in Table 12,
employing a voxel spacing of 1.5 ⇥ 1.5 ⇥ 1.5 mm3 and
2.5⇥2.5⇥2.5 mm3 led to a performance decrease of 0.3%
and 0.6% in terms of average DSC, respectively. The dimin-
ished performance with a voxel spacing of 1.5 ⇥ 1.5 ⇥ 1.5
mm3 can be attributed to reduced contextual information
within the input image patch. Conversely, the inferior per-
formance with a voxel spacing of 2.5 ⇥ 2.5 ⇥ 2.5 mm3 is
likely due to information loss during downsampling, partic-
ularly impacting small structure segmentation.

4. More Results on Sparsely Labeled Data
Tables 13 and 14 provide a detailed comparison of the per-
formance for each anatomical structure and across each
dataset, respectively. Visual results of a randomly selected



Table 12. Performance trained with different patch sizes.

Voxel Size DSC [%]

1.5⇥ 1.5⇥ 1.5 88.4±7.7

2.0⇥ 2.0⇥ 2.0 88.7±7.0

2.5⇥ 2.5⇥ 2.5 88.1±7.8

subject from each dataset are presented in the second and
third columns of Fig. 5. These results align with the find-
ings in Table 8, highlighting the consistent success of our
method across different views. Notably, even with the uti-
lization of only 20% of incompletely annotated slices for
training, our method demonstrates commendable perfor-
mance across the structures of interest and datasets.

5. More Results on Hybrid Data
Tables 15 and 16 present a comprehensive comparison of
performance for each anatomical structure and across each
dataset, respectively. Visual results of a randomly selected
subject from each dataset are displayed in the fourth column
of Fig. 5. These results concur with the findings in Table
9, underscoring the effectiveness of our method in utilizing
a mixture of partially and sparsely labeled data for model
training.
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Table 13. Performance (DSC, %) comparison on each anatomical structure using different portions of annotated slices.

Setting View Sp RK LK GB Eso L St A PC Pan RAG LAG Duo B PU PSV Average

20%

Axial 93.5 92.6 92.4 74.3 78.8 95.4 89.5 89.4 83.2 83.1 70.8 72.4 70.5 85.7 71.1 70.7 82.0
±9.3 ±10.9 ±9.9 ±26.4 ±12.0 ±9.6 ±13.7 ±12.1 ±15.0 ±11.4 ±14.1 ±16.3 ±23.5 ±17.2 ±22.9 ±20.1 ±15.3

Sagittal 94.5 92.5 91.9 75.6 76.9 96.1 90.5 91.0 85.0 83.5 71.6 73.1 71.7 88.6 74.2 72.3 83.1
±8.1 ±11.1 ±9.0 ±25.5 ±11.3 ±7.1 ±12.2 ±8.7 ±12.9 ±9.3 ±13.0 ±14.6 ±19.7 ±14.6 ±24.5 ±18.5 ±13.8

Coronal 94.8 92.6 92.7 75.1 76.5 96.0 90.7 90.6 85.5 83.5 71.3 71.6 73.3 88.2 73.3 74.3 83.1
±6.8 ±10.8 ±8.0 ±24.3 ±12.6 ±7.9 ±12.0 ±7.8 ±13.5 ±10.5 ±14.6 ±16.6 ±18.6 ±15.3 ±20.2 ±17.6 ±13.6

100%

Axial 95.0 93.5 93.9 76.1 80.7 96.6 91.3 91.7 86.2 84.6 74.5 74.9 75.0 89.2 76.2 76.8 84.8
±7.0 ±8.4 ±5.8 ±26.1 ±10.2 ±5.4 ±11.5 ±9.0 ±12.3 ±8.8 ±12.0 ±14.3 ±18.3 ±13.6 ±20.1 ±15.8 ±12.4

Sagittal 94.6 93.1 93.7 76.1 80.4 96.2 91.2 91.1 86.4 84.6 72.7 73.9 73.9 89.0 76.9 75.8 84.3
±8.6 ±8.7 ±5.1 ±25.1 ±8.6 ±7.1 ±12.0 ±8.8 ±10.4 ±9.9 ±14.2 ±15.2 ±18.2 ±14.4 ±23.8 ±17.8 ±13.0

Coronal 95.2 93.5 93.7 77.7 81.3 96.5 91.1 91.7 86.4 84.4 73.0 74.6 74.8 89.6 73.7 75.2 84.5
±6.6 ±7.6 ±5.6 ±23.5 ±8.8 ±6.4 ±12.2 ±9.1 ±12.0 ±9.7 ±13.6 ±14.7 ±17.1 ±12.8 ±19.1 ±16.6 ±12.2

Table 14. Performance (DSC, %) comparison on each dataset using different portions of annotated slices.

Setting View AbCT-1K AMOS-CT AMOS-MRI BTCV FLARE22 NIH-Pan TotalSeg Urogram WORD

20%

Axial 92.7 82.7 80.0 76.3 89.8 83.5 79.3 92.7 82.0
±2.0 ±8.1 ±10.1 ±5.8 ±1.5 ±4.7 ±15.2 ±2.6 ±4.4

Sagittal 92.7 83.4 80.5 76.5 89.4 83.2 82.0 92.3 82.7
±1.9 ±7.6 ±8.5 ±6.5 ±1.5 ±5.3 ±11.3 ±3.0 ±4.4

Coronal 92.8 83.5 79.2 76.1 89.8 83.3 81.6 92.6 82.5
±2.3 ±7.2 ±9.8 ±7.8 ±1.6 ±5.8 ±13.1 ±3.0 ±4.2

100%

Axial 93.4 85.1 80.9 77.9 90.5 83.8 84.7 93.0 83.7
±1.7 ±6.3 ±9.0 ±6.4 ±1.8 ±5.4 ±9.7 ±3.0 ±4.1

Sagittal 93.0 84.2 81.5 78.7 90.4 84.5 84.2 93.0 83.5
±2.2 ±7.7 ±7.7 ±5.5 ±1.0 ±5.2 ±9.8 ±2.9 ±4.4

Coronal 93.3 84.5 81.1 78.1 90.3 84.4 85.0 93.0 83.7
±2.0 ±6.9 ±8.3 ±5.7 ±1.3 ±4.2 ±9.5 ±3.2 ±4.0

Table 15. Performance (DSC, %) comparison on each anatomical structure using mixed training.

View Sp RK LK GB Eso L St A PC Pan RAG LAG Duo B PU PSV Average

Axial 95.1 93.4 93.8 75.8 81.6 96.4 90.7 91.7 86.1 84.5 74.6 75.7 73.4 89.0 76.6 73.2 84.5
±9.3 ±10.9 ±9.9 ±26.4 ±12.0 ±9.6 ±13.7 ±12.1 ±15.0 ±11.4 ±14.1 ±16.3 ±23.5 ±17.2 ±22.9 ±20.1 ±15.3

Sagittal 95.1 93.2 93.7 77.6 80.6 96.6 91.6 92.1 86.5 84.9 74.1 75.5 75.3 89.2 76.6 75.9 84.9
±7.1 ±10.3 ±6.6 ±24.0 ±10.7 ±6.5 ±11.5 ±7.1 ±11.2 ±8.5 ±13.7 ±14.3 ±17.5 ±14.7 ±26.7 ±17.4 ±13.0

Coronal 95.1 93.8 93.8 77.2 80.6 96.4 91.3 91.9 86.3 84.7 73.9 75.7 75.1 89.5 77.6 76.7 85.0
±6.8 ±6.4 ±6.0 ±25.0 ±11.3 ±7.3 ±12.4 ±7.8 ±12.4 ±8.9 ±14.2 ±13.8 ±18.2 ±14.2 ±23.6 ±17.4 ±12.9

Table 16. Performance (DSC, %) comparison on each dataset using mixed training.

View AbCT-1K AMOS-CT AMOS-MRI BTCV FLARE22 NIH-Pan TotalSeg Urogram WORD

Axial 93.5 85.1 80.9 76.5 90.8 84.3 84.3 93.3 83.2
±1.9 ±6.5 ±8.9 ±5.7 ±1.0 ±5.2 ±10.0 ±3.0 ±4.2

Sagittal 93.3 85.1 80.7 77.1 90.8 84.2 84.7 93.1 83.5
±1.8 ±7.4 ±8.5 ±7.2 ±0.9 ±4.4 ±10.6 ±3.1 ±4.0

Coronal 93.3 85.1 80.8 77.6 90.5 84.5 84.1 93.3 83.6
±1.7 ±7.2 ±9.3 ±6.6 ±1.1 ±4.8 ±12.7 ±2.7 ±4.1
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Figure 5. Visual comparisons between the ground truth and predictions from models trained with 20% slices of the axial view, 100%
slices of the axial view (loss is computed slice-wise to emulate sparsely labeled data), and hybrid data (the entirety of AMOS, BTCV, and
FLARE22 is utilized, while 20% slices of the axial view are taken from other datasets for training) on subjects from various datasets. For
a clearer view of detailed differences, zoom in to closely examine the results.


	. Introduction
	. Related Work
	. Methods
	. Motivation, Objective & Scope
	. Overview
	. Model Self-disambiguation
	. Prior Knowledge Incorporation
	. Imbalance Mitigation
	. Overall Objective

	. Experiments and Results
	. Experiment Setup
	. Results on Partially Labeled Data
	. Results on Sparsely Labeled Data
	. Results on Hybrid Data

	. Conclusions
	. More Details about Datasets
	. More Details about Network Architecture
	. More Results on Partially Labeled Data
	. More Results on Sparsely Labeled Data
	. More Results on Hybrid Data

