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Appendix

In the supplementary materials, we provide additional in-
formation, as listed below.

* Sec. A: The ablation studies on the ViTamin macro-level
network and micro-level block designs.

* Sec. B: ViTamin sets new SoTA in open-vocabulary dense
prediction tasks including the OV-LVIS detection bench-
mark and 6 segmentation benchmarks.

» Sec. C: The results of using the proposed Locked-Text
Tuning (LTT) training scheme.

* Sec. D: The results of benchmarking vision models under
CLIP setting with an ImageNet-22K data scale.

e Sec. E: The numerical results of benchmarking vision
models under CLIP setting with DataComp-1B.

* Sec. F: Detailed results of 38 datasets for different VLMs.

e Sec. G: The training hyper-parameter settings for
short/long schedules and high-resolution input fine-
tuning.

A. Ablation Studies

We conduct ablation studies on ViTamin design from two
aspects: macro-level network and micro-level block. At the
macro-level network design, we ablate the hybrid architec-
ture and channel sizes of our three-stage network. At the
micro-level block design, we ablate the design choices of
convolution blocks and feed-forward network. In the ta-
bles, ‘IN acc.” and ‘avg. 38’ denote the ImageNet accuracy
(%) and the average accuracy (%) of 38 datasets, respec-
tively. The ImageNet accuracy is used as the main metric.
For simplicity, all the ablation studies are performed using
base model variants with 128M seen samples.

Hybrid Architecture: In Tab. 1, we ablate design
choices of hybrid architectures. Specifically, the compared
architectures include ViT-B/16 (pure transformer with TFB
or TFB-GeGLU blocks in stage 3), a new MBConvNet-
B (pure ConvNet with MBConv-LN blocks in all three
stages), and our ViTamin-B (MBConv-LN in stage 1 and
2, and TFB-GeGLU in stage 3). The ablated models
may differ in depth but share a similar number of param-
eters. As shown in the table, our ViTamin-B outperforms

# block type depth | params | IN acc. | avg. 38

model stage 1 & 2 stage 3 stage 3 ™M) (%) datasets
ViT-B/16 - TFB 12 86.2 45.8 41.0
ViT-B/16 TFB-GeGLU 14 84.2 454 40.9
ViT-B/16 - TFB-GeGLU 15 90.2 46.1 41.2
MBConvNet-B | MBConv-LN | MBConv-LN 18 87.3 45.8 41.7
ViTamin-B MBConv-LN | TFB-GeGLU 14 875 50.8 44.6

Table 1. Ablation study for hybrid architecture. MBConv-LN:
Mobile Convolution with LayerNorm. TFB-GeGLU: Transformer
Block with GeGLU. In this ablation study, we ablate TFB and
TFB-GeGLU in ViT-B/16, and design a pure ConvNet using only
MBConv-LN across all three stages (called MBConvNet-B in the
table). Our final setting is marked in blue.

channel size ‘ params (M) ‘ MAC:s (G) ‘ IN acc. ‘ avg. 38

(C,2C, 8C) 86.0 19.5 49.7 448
(C, 2C, 6C) 87.5 21.8 50.8 44.6
(C,2C, 40) 91.5 28.5 51.0 44.8

Table 2. Ablation study on the channel sizes. The channel sizes
(1C, 22C, x3C') denote the channel sizes of stage 1, 2, and 3,
respectively, w.r.t. a constant C (e.g., (z1, z2,2z3) = (1,2,6) and
C = 128 for ViTamin-B). Our final setting is marked in blue.

block type | params (M) | MACs (G) | IN acc. | avg. 38

ConvNeXt 88.0 21.0 49.8 449
MBConv-BN 87.5 21.9 50.5 449
MBConv-BN-SE 88.5 21.9 50.9 45.0
MBConv-LN 87.5 21.8 50.8 44.6

Table 3. Ablation study for design choice of convolutional
blocks. BN: BatchNorm. SE: Squeeze-and-Exciation. LN: Lay-
erNorm. Our final setting is marked in blue.

both the pure Transformer ViT-B/16 and the pure ConvNet
MBConvNet-B by more than +4.7%.

Channel Sizes of ViTamin: We ablate the effect of vary-
ing channel sizes within our ViTamin. The channel sizes
(x1C, 22C, x3C) denote the channel sizes of stage 1, 2,
and 3, respectively. We set the channel size multipliers z;
and z9 to be 1 and 2 (commonly used in the literature for
ImageNet). We ablate different values for x5 in Tab. 2. Our
final setting of (C, 2C, 6C) improves over (C, 2C, 8C)
by +1.1%, and is on par with (C, 2C, 4C) but uses fewer
parameters and MACs.

Design Choice of Convolution Blocks: In Tab. 3, we
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image encoder ‘ GeGLU [56] ‘ depth ‘ params (M) ‘ IN acc. ‘ avg. 38

ViT-B/16 12 86.2 458 41.0
ViTamin-B 12 89.8 50.3 44.0
ViTamin-B v 12 75.7 49.9 435
ViTamin-B v 14 87.5 50.8 44.6
ViTamin-B 14 104.0 50.4 44.5

Table 4. Ablation study for design choice of FFN. Our final
setting is marked in blue.

ablate the design choices of convolution blocks in stage 1
and 2. The design choices include ConvNeXt, MBConv-
BN, MBConv-BN-SE, and our MBConv-LN. MBConv-
BN block is the original MBConv block used in Mo-
bileNetv2 [55] with three BatchNorm layers [33], while
the MBConv-BN-SE block, proposed by MobileNetv3 [29],
augments MBConv-BN with the Squeeze-and-Excitation
layer [30]. Each of the MBConv variants demonstrates a
superior performance to the ConvNeXt block [43]. Our
MBConv-LN, which employs a single Layer Normaliza-
tion [1], outperforms the MBConv-BN block, and achieves
a similar result to MBConv-BN-SE while requiring fewer
parameters.

Design Choice of Feed-Forward Network: In Tab. 4,
we study the effectiveness of GeGLU [56] in a Transformer
Block (TFB) [58]. We experiment with ViT-B/16 and our
ViTamin-B, and ablate on the effect of using the original
TFB vs. the adopted TFB-GeGLU [56]. Remarkably, with
the same depth of 12 blocks, ViTamin-B with GeGLU can
achieve 49.9% accuracy and surpass the plain ViT-B/16 by
a significant +4.1% margin and requires 13% fewer param-
eters. Adding two more blocks to align the parameters with
ViT-B/16, our ViTamin-B boosts its performance to 50.8%,
which not only improves over the GeGLU-absent ViTamin-
B counterpart (last row) by +0.4% but also maintains a re-
duced parameters by 26%.

B. Open-Vocabulary Dense Prediction

Frozen Feature Extraction via Sliding Window: We
tested the transferability of VLMs to open-vocabulary de-
tection tasks using F-ViT [64] and open-vocabulary seg-
mentation tasks using FC-CLIP [70] frameworks, which
both rely on a frozen CLIP backbone. The image size (e.g.,
1344 x 1344) for dense prediction tasks is usually larger
than that of upstream VLM pre-training (e.g., 224 x 224).
To employ a frozen transformer-based architecture in these
framework, we did not use any distillation [64] or convo-
lutional backbone [70], while we find that a simple slid-
ing window strategy [71] for frozen image feature extrac-
tion is effective enough to obtain reasonable performance
on downstream tasks requiring high resolution input. The
window size is the same as the input image size used dur-
ing its VLM pretraining. We denote the slightly modified
frameworks as Sliding F-ViT and Sliding FC-CLIP. We fol-

imace encoder pretraining OV-LVIS [24]
& dataset scheme (mAP;)
ViT-L/14 DataComp-1B  CLIPA-v2 325
ViTamin-L | DataComp-1B  OpenCLIP 35.6

Table 5. Open-vocabulary detection. Different image encoders
(ViT-L/14 by [40] and ConvNeXt-L by [32]) are deployed us-
ing the F-ViT framework [64] in a sliding window manner [71],
trained on OV-LVIS dataset [24]. ConvNeXt-L is marked in gray
due to different pretrained dataset.

low [64, 70] and use 896 x 896 and 1344 x 1344 input size
for the open-vocabulary detection and segmentation tasks,
respectively.

B.1. Open-Vocabulary Detection

In Tab.5 of main paper, ViTamin has been validated to be
effective for open-vocabulary object detection on the OV-
COCO dataset. In this section, we supplement the results
on an additional benchmark OV-LVIS, where ViTamin sets
a new state-of-the-art performance.

Experimental Setting: The open-vocabulary LVIS
(OV-LVIS), introduced in ViLD [24], redefines the 337 rare
categories from the LVIS v1.0 [25] dataset as novel cat-
egories. We strictly follow the F-ViT [64] framework to
perform the open-vocabulary detection tasks, excepting the
frozen image features are extracted in a sliding-window
manner [71] (denoted as Sliding F-ViT in Tab. 6). The ef-
fectiveness of VLMs is validated through simply replacing
the frozen backbone of F-ViT [64] framework. For evalu-
ation, we follow previous works to use the mean mask AP
on rare categories (AP,.) as the metric on OV-LVIS.

Results Analysis: Tab. 5 demonstrates that ViTamin-L
is a stronger image encoder for open-vocabulary detector,
surpassing its ViT-L/14 counterpart by 3.1% on OV-LVIS
dataset [24].

Comparison with Prior Arts: As shown in Tab. 6, Vi-
Tamin consistently outperforms all previous methods in the
open-vocabulary detection task on OV-LVIS, setting a new
state-of-the-art performance of 35.6% AP,. Notably, our
approach surpasses not only the distillation-based backbone
(e.g., CLIPSelf [64]) but also larger backbone (e.g., ViT-
H/16 in RO-ViT [35]).

B.2. Open-Vocabulary Segmentation

In Tab.6 of main paper, ViTamin has been validated to be
effective for open-vocabulary panoptic and semantic seg-
mentation on 8§ dataset. We strictly follow the FC-CLIP
framework [70] to perform the open-vocabulary segmenta-
tion tasks, excepting the frozen image features are extracted
in a sliding-window manner [71] (denoted as Sliding FC-
CLIP in Tab. 5). Following prior works [70], the Sliding
FC-CLIP is trained on COCO [42] and zero-shot evaluated



image OV-LVIS OV-COCO

detector encoder | (AP,)  (APugvel)
VALD [24] RN50 16.6 27.6
OV-DETR [72] RN50 174 29.4
DetPro [18] RN50 19.8 -
OC-0VD [3] RN50 21.1 36.6
OADP [61] RN50 21.7 -
RegionCLIP [76] RN50x4 220 -
CORA [65] RN50x4 22 417
BARON-KD [63] RN50 226 34.0
VLDet [41] SwinB 26.3 -
F-VLM [38] RN50x64 | 328 28.0
Detic [78] SwinB 33.8 -
RO-ViT [35] VIT-L/16 324 33.0
RO-ViT [35] VITH/16 | 34.1 .
F-ViT [64] VIT-L/14 242 247
F-ViT+CLIPSelf [64] | VIiT-L/14 349 443
Sliding F-ViT ViTamin-L | 35.6 375

Table 6. Comparison with prior arts on open-vocabulary detec-
tion on OV-LVIS [24] and OV-COCO [73]. The last row (Sliding
F-ViT) shows the result of employing our ViTamin-L using the F-
ViT framework [64] in a sliding window manner [71].

panoptic dataset (PQ) semantic dataset (mloU)
method image ADE Cityscapes MV |A-150 A-847 PC-459 PC-59 PAS-21
encoder | [771  [131 [471| 771 (771 1451 (451 [19]

FreeSeg [50] - 16.3 - - - - - -

OpenSeg [23] - - - - | 2.1 63 9.0 421
GroupViT [67] | ViT-S/16 - - - | 106 63 9.0 421
MaskCLIP [16] | VIiT-B/16 | 15.1 - - 1237 82 100 459 -

ODISE [68] - 222 239 1421299 11.1 145 573 84.6

FC-CLIP [70] [ConvNeXt-L[268 440 18.3] 341 148 182 584 38138
Sliding FC-CLIP| ViTamin-L [27.3 440  182[ 356 161 204 584 834

Table 7. Comparison with prior arts on open-vocabulary seg-
mentation. ViTamin sets a new state-of-the-art result on various
panoptic and semantic segmenation datasets. The last row (Slid-
ing FC-CLIP) shows the result of employing our ViTamin-L using
the FC-CLIP framework [70] in a sliding window manner [71].

on the other datasets. In this section, we compare ViTamin
with previous state-of-the-art methods.

Comparison with Prior Arts: In Tab. 7, our approach
consistently outperforms all previous open-vocabulary seg-
mentation methods in 2 panoptic dataset and 4 semantic
benchmarks, setting a new state-of-the-art. Notably, ViTa-
min surpasses the the prior art by 0.5% PQ on ADE panop-
tic dataset and 1.5% mIOU on A-150 semantic dataset.

C. Locked-Text Tuning

Tab. 8 summarizes the detailed results of using the proposed
new training scheme, Locked-Text Tuning (LTT). Specifi-
cally, when using the LTT training scheme, we employ the
text encoder pretrained from ViTamin-L, and use it to guide
the training of image encoders of ViTamin-S and ViTamin-
B. As shown in the table, we consistently observe the im-
provements of using LTT. Compared to other distillation-
based CLIP training schemes (See the rows marked in grey),
our models achieve higher classification and retrieval ac-

training training image params | seen | INacc. | avg. 38 retrieval
scheme dataset encoder M) samp. (%) (%) COCO (%)
models on private/other dataset, for reference
[75]
[62]
[62]
our experiments
OpenCLIP DataComp-1B ViTamin-S 22.0 128M 433 40.8 25.8
OpenCLIP DataComp-1B ViTamin-S 22.0 512M 573 49.6 36.6
OpenCLIP DataComp-1B ViTamin-S 22.0 1.28B 62.2 53.2 40.2
OpenCLIP DataComp-1B | ViTamin-B 87.5 128M 50.8 44.6 31.2
OpenCLIP DataComp-1B ViTamin-B 87.5 512M 64.0 539 41.7
OpenCLIP DataComp-1B | ViTamin-B 875 1.28B 68.9 57.7 44.9
LTT (ours) DataComp-1B ViTamin-S 22.0 128M 475 448 334
LTT (ours) DataComp-1B | ViTamin-S 22.0 512M 58.9 52.0 41.6
LTT (ours) DataComp-1B ViTamin-S 22.0 1.28B 63.4 54.6 45.0
LTT (ours) DataComp-1B ViTamin-B 87.5 128M 56.7 50.5 39.8
LTT (ours) DataComp-1B ViTamin-B 87.5 512M 66.8 57.3 47.1
LTT (ours) DataComp-1B ViTamin-B 87.5 1.28B 70.8 59.4 50.0

Table 8. Locked-Text Tuning (LTT) training scheme. We use
the pretrained text encoder from ViTamin-L and train the image
encoders of ViTamin-{S,B}. Due to the use of private or other
filtered/merged dataset, the results borrowed from LiT [75] and
TinyCLIP [62] are just for reference, and LiT [75] reports retrieval
on COCO only. f: a filtered subset of WebLlI dataset [9].

curacy in similar model parameters. Practically, despite
being adopted from the larger model, the text encoder is
much lighter compared to the image encoder (6.6 vs 21.8
GMAC:s), resulting in only a 14% increase in overall model
MAC:s. Interestingly, using LTT results in a 10% savings in
training costs for ViTamin-B, due to the text encoder being
fully frozen.

D. Benchmarking Vision Models in CLIP with
ImageNet-22K Data Scale

Tab. 9 summarizes the results of benchmarking vision mod-
els under CLIP setting with ImageNet-22K data scale.
Specifically, we mimic the ImageNet-22K data scale by
randomly selecting 14.2M data samples from DataComp-
1B, and set the training epochs to 90, a standard train-
ing setting on ImageNet-22K. Similar to the findings on
ImageNet-22K in the literature [43], under such a small
data scale (14.2M data samples), ConvNeXt-T consistently
outperforms ViT-S/32 and ViT-S/16. However, when the
data scales up to 128M, or even 1.28B, the results are
totally different, where ViT/16 shows a superior perfor-
mance to ConvNeXt by a large margin, across all model
sizes (see Tab. 10). We note that hybrid models, such as
CoAtNet-0 and our ViTamin-S, still demonstrate the best
performances under this small data scale, showing that the
hybrid design works well across all data sizes.

E. Numerical Results of Benchmarking Vision
Models with DataComp-1B

In Fig.2 of the main paper, we provide the analysis of bench-
marked results from various aspects. In this section, we fur-
ther supplement the numerical results of benchmarking vi-
sion models (including ViT, ConvNeXt, CoAtNet, and our



image data epoch | #params | MACs | ImageNet avg. 38
encoder size (M) ™M) (G) Acc.(%) | datasets (%)
ImageNet-22K scale
ViT-S/32 14.2 90 21.81 1.12 39.4 36.7
ViT-S/16 14.2 90 21.81 425 457 38.7
ConvNeXt-T 14.2 90 28.61 4.47 459 39.3
CoAtNet-0 14.2 90 24.56 4.43 49.1 41.4
ViTamin-S ‘ 14.2 ‘ 90 ‘ 22.03 ‘ 5.50 ‘ 50.3 ‘ 41.3

Table 9. Benchmarking vision models under CLIP setting with
an ImageNet-22K data scale. We mimic the ImageNet-22K data
scale with 14.2M data size and 90 training epochs (standard train-
ing setting on ImageNet-22K). The benchmarked vision models
include ViT (pure transformer), ConvNeXt (pure convolution),
CoAtNet (hybrid model), and our proposed ViTamin.

ViTamin) across different model scales and data sizes in
Tab. 10. As shown in the table, the proposed ViTamin con-
sistently outperforms all the other vision models in almost
all settings.

F. Results of 38 dataset for different VLMs.

Tab. 11 demonstrates the detailed results for VLMs with dif-
ferent large-variant image encoders. This table is associated
with Tab. 3 of the main paper.

G. Training Hyper-parameter Settings

Tab. 12 and Tab. 13 provide our details of training hyper-
parameter settings for short/long schedules and fine-tuning
for high resolution, respectively. The short schedule is
used to benchmark several vision models on DataComp-1B,
along with our ablation studies, while the long schedule is
used to train our ViTamin-L for better performances. When
fine-tuning the trained model on larger input resolution, we
fine-tune with only 200M seen samples and a small constant
learning rate.
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image | text encoder seen #params (M) MACs (G) | ImageNet | avg. 38 | ImageNet | VTAB | Retrieval
image encoder | size | depth/width | samples image+text image-+text ‘ Acc. (%) | datasets | dist. shift. ‘
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ViT-L/14 224 12/768 128M | 303.97 + 123.65 | 77.83 + 6.55 49.9 43.8 394 44.5 39.3
ConvNeXt-XL | 224 12/768 128M | 350.25 + 123.65 | 79.65 + 6.55 42.8 384 333 384 35.0
CoAtNet-4 224 12/768 128M | 275.07 + 123.65 | 60.81 + 6.55 52.5 45.2 42.0 45.2 41.1
ViTamin-L 224 12/768 128M | 333.32 + 123.65 | 72.60 + 6.55 52.7 44.8 424 44.6 41.8

ViT-L/32 224 127768 512M | 303.97 + 123.65 | 15.27 + 6.55 60.4 51.8 47.4 52.7 473
VIiT-L/16 224 12/768 512M | 303.97 + 123.65 | 59.70 + 6.55 66.4 55.6 53.6 55.5 522
ViT-L/14 224 12 /768 512M | 303.97 + 123.65 | 77.83 + 6.55 67.0 55.4 54.8 54.2 52.0
ConvNeXt-XL | 224 12 /768 512M | 350.25 + 123.65 | 79.65 + 6.55 63.0 52.5 51.1 51.8 49.4
CoAtNet-4 224 12 /768 512M | 275.07 + 123.65 | 60.81 + 6.55 66.8 56.1 56.4 56.5 50.4
ViTamin-L 224 12 /768 512M | 333.32 + 123.65 | 72.60 + 6.55 68.7 56.6 56.8 56.5 53.2

ViT-L/32 224 12/768 1.28B | 303.97 + 123.65 | 15.27 + 6.55 67.5 57.0 54.1 57.9 51.9

ViT-L/16 224 12/768 1.28B | 303.97 + 123.65 | 59.70 + 6.55 71.9 60.1 59.9 59.9 56.0
ViT-L/14 224 12 /768 1.28B | 303.97 + 123.65 | 77.83 + 6.55 72.3 60.7 60.5 60.0 56.0
ConvNeXt-XL | 224 12/768 1.28B | 350.25 + 123.65 | 79.65 + 6.55 70.2 58.3 59.1 57.0 55.5

CoAtNet-4 224 12/768 1.28B | 275.07 + 123.65 | 60.81 + 6.55 71.3 59.4 61.4 59.1 534
ViTamin-L 224 12 /768 1.28B | 333.32 + 123.65 | 72.60 + 6.55 73.9 62.0 62.9 61.4 56.6

Table 10. Benchmarking vision backbones on Datacomp-1B under CLIP setting (contrastive language-image pretraining). We
benchmark popular vision backbones, including ViT [17] (pure transformer model), ConvNeXt [43] (pure convolution model), CoAt-
Net [14] (hybrid convolution-transformer model), and our proposed ViTamin, under different model parameters and training seen samples.
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GeoDE [52]

VIiT-L/14  [32]]66.3|79.294.7 98.2 87.3 35.6 24.4 31.6 66.5 71.247.5 94.5 58.5 68.0 72.1 69.6 32.6 90.8 27.9 86.6 74.3 82.6 95.1 82.551.2 61.0 69.4 93.1 99.3 74.3 67.7 81.2 54.5 46.7 16.1 50.9 24.0 66.2 91.5
ViT-L/14  [40]]65.4{79.6 94.5 98.7 88.5 18.6 24.5 29.4 69.6 60.4 43.0 94.2 59.1 70.6 73.0 71.2 33.7 92.9 19.3 73.7 69.9 81.0 95.0 80.7 59.2 53.9 68.4 93.7 99.2 75.3 63.9 81.9 56.0 43.9 17.2 67.6 24.6 66.5 91.5
VIT-L/14 T [40]/65.7|80.3 94.4 98.6 88.3 15.7 24.4 30.7 68.6 58.1 42.8 94.6 57.0 70.9 73.5 77.7 32.9 93.3 20.0 76.7 73.2 81.0 95.0 79.8 60.3 53.2 68.8 94.1 99.3 75.6 62.9 82.5 56.4 44.5 19.4 67.8 25.0 67.5 92.4

ViTamin-L [32]|66.7|80.8 95.1 98.5 88.0 35.4 24.1 33.0 68.1 66.6 49.294.9 61.9 71.5 73.6 72.4 32.0 93.0 23.6 81.8 76.1 85.0 95.6 80.2 52.2 61.1 73.0 94.8 99.3 75.8 66.1 81.1 54.745.1 17.2 58.0 16.4 68.1 91.5
ViTamin-LT [32]|67.2|81.8 95.6 98.5 87.8 31.7 24.1 36.0 69.2 64.7 49.7 95.8 63.4 72.1 75.2 81.7 31.1 93.8 21.2 81.3 80.7 84.7 95.8 82.0 50.1 60.5 73.1 95.1 99.5 76.3 66.9 82.5 55.7 47.3 19.1 49.5 17.5 70.7 92.2
ViTamin-XL [32](68.1/82.6 95.7 98.7 88.8 19.1 20.0 37.8 71.5 75.6 53.7 96.0 53.2 73.1 76.3 83.1 33.0 94.2 17.4 88.9 81.9 85.6 95.9 83.8 56.2 61.9 75.9 94.8 99.4 76.2 74.0 84.7 58.7 47.9 21.4 46.0 22.5 68.6 92.5

Table 11. Detailed results of 38 dataset for different VLMs. The compared models are trained with the scheme of either OpenCLIP [32]
or CLIPA-v2 [40]. All models are trained on DataComp-1B [21] dataset with similar seen samples for a fair comparison. {: using larger
number of patches of 576 (i.e., image size of 336 for row 3 and 384 for row 5, respectively).

short schedule long schedule

raining config ViTamin-S/B/L. ViTamin-L/L2/XL/XL
2242 2242/2242/2562/2562

batch size 8k/8k/16k 90k
seen samples 1.28B 12.8B/12.8B/12.8B/40B
optimizer AdamW AdamW
base learning rate Se-4 2e-3
weight decay 0.02 0.02
optimizer momentum 31 0.9 0.9
optimizer momentum 32 | 0.98/0.98/0.95 0.95
learning rate schedule cosine decay cosine decay
warmup steps 500 782/4436/4436/9981
warmup schedule linear linear
random crop ratio none [0.4, 1.0]
stochastic depth [31] 0.1 0.1
precision amp bfloat16 amp bfloatl16

Table 12. Short/Long schedule training settings for ViTamin
variants.

.. ViTamin-L ViTamin-L2  ViTamin-XL
pre-training config 2242 2242 2562
fine-tuning config 2562/3362/384% 2562/3362/384% 2562/3842
batch size 90k 90k 90k
seen samples 0.2B 0.5B 0.5B
optimizer AdamW AdamW AdamW
base learning rate le-5 le-5 le-5
weight decay 0 0 0
optimizer momentum [1 0.9 0.9 0.9
optimizer momentum S2 0.95 0.95 0.95
learning rate schedule constant constant constant
warmup steps 0 0 0
random crop ratio none none none
stochastic depth [31] 0.1 0.1 0.1
precision amp bfloat16 amp bfloatl6 amp bfloat16

Table 13. Fine-tuning setting for high resolution. The models
are pre-trained with long schedule and then fine-tuned on the target
resolution.
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