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Supplementary Material

A. Implementation Details
A.1. Framework of Our OAFA

First, we show the framework of our OAFA:

Algorithm 1 Framework of the Offset-guided Adaptive
Feature Alignment

Input:
The image of RGB modality (sensed modality), Irgb;
The image of IR modality (reference modality), Iir;
The threshold of output confidence τ ;

Output:
A set of detection results D on the RGB-IR images;

1: Extracting unimodal feature maps Frgb and Fir from
Irgb and Iir;

2: Conducting modality-invariant and modality-specific
features Fc

m, Fs
m (m ∈ {rgb, ir}) from Frgb and Fir

through a decoupled multimodal learning network;
3: Predicting the spatial offsets ϕc from Fc

rgb and Fc
ir us-

ing the spatial offset modeling submodule;
4: Capturing optimal fusion locations in sensed modality

to gain aligned features Fc,a
rgb and Fs,a

rgb with the help of
the ϕc by the offset-guided deformable alignment sub-
module;

5: Fusing the aligned RGB features Fc,a
rgb, Fs,a

rgb and origi-
nal IR featuresFc

ir, Fs
ir by the decoupled feature fusion

submodule to obtain the final features Ff ;
6: Conducting the anchor-wise classification and regres-

sion to obtain the detection category Cai, confidence
Coi, and 2D oriented bounding box coordinates Oi for
each target Ti;

7: D ← ∅;
8: for each Ti do
9: if Coi > τ then

10: D ← D ∪ {[Oi, Cai, Coi]};
11: end if
12: end for
13: return D;

A.2. The Structure of the Spatial Offset Modeling
Submodule

The structure of the Spatial Offset Modeling (SOM) sub-
module is shown in Fig. 1, mainly including a spatial atten-
tion network and a channel attention network. The input of
SOM is the modality-invariant features Fc

rgb and Fc
ir, and

the output is the spatial offsets ϕc. In spatial attention net-

Figure 1. Structure visualization of the spatial offset modeling
module.

work, we first use a max and an average operation in chan-
nel to generate two channel context descriptors, and reduce
the channel dimensions of the input feature maps to 1. Fol-
lowing this, we gain richer representations in textures and
backgrounds by concatenating these two feature maps. And
then use a convolutional layer and the Sigmoid function
to optimize and normalize the feature maps to [0, 1]. Fi-
nally, these feature maps are multiplied by the original fea-
ture maps to obtain the spatial enhanced feature maps Fc,p

rgb

and Fc,p
ir . As for channel attention network, Fc,p

rgb and Fc,p
ir

are added for calculating the spatial differences. After that,
the multimodal channel attention weights are computed by
a two-layer perceptron following the global max-average
pooling operation. The ultimate attention weights are de-
rived by integrating the dual channel attention weights and
applying a Sigmoid activation function. Acting as a scale
factor for each channel, the transformed attention weights
are multiplied element-wise with the original feature maps.
The channel-enhanced feature maps Fc,e

rgb and Fc,e
ir are ob-

tained by adding the original feature maps with the scaled
feature maps. Eventually, The spatial offsets ϕc are derived
from the differences between the Fc,e

rgb and Fc,e
ir .

A.3. The Pipeline of the Two-stage Training

The pipeline of two-stage training is shown in Fig. 2.
The purpose of stage I is to ensure that the pre-decoupling
features contain sufficient semantic and spatial information.
To this end, we train the two-stream multiscale encoder net-
work Bm to acquire unimodal image features Frgb and Fir.
After that, these features are fed into a concatenation opera-
tion to obtain the fusion features, which are constrained by
the object detection loss. Note that the pre-trained weights
of YOLOv5s [6] are not loaded to avoid the environment
bias introduced by its pre-training on natural images. In the
training process of stage I, we use an initial learning rate



Figure 2. The pipeline of the two-stage training. SOM denotes the spatial offset modeling submodule, ODA denotes the offset-guided
deformable alignment submodule, and DFF denotes the decoupled feature fusion submodule.

(a) Results in model without DML (b) Results in model with DML

Figure 3. Influence of DCN. We report the evaluation results on validation set during training process for ablation experiments. The models
are trained over 100 epochs with batch size 16. DML represents the decoupled multimodal learning submodule and ODA represents the
offset-guided deformable alignment submodule.

of 0.002 with cosine scheduling, and the epoch is set to 50
with a batch size of 16.

In Stage II, we train the whole network with the Cross-
modality Spatial Offset Modeling (CSOM) module and the
Offset-guided Deformable Alignment and Fusion (ODAF)
module to achieve adaptive feature alignment that is most
conductive to the detection task. During this process, the
Bm is initialized with the weights of stage I. Eventually,
our OAFA is trained end-to-end with the total loss function
Ltotal. The epoch in stage II is set to 100 while other ex-
perimental parameters are set in accordance with stage I.

A.4. The Network Structure of Our OAFA

The detailed network structure information of OAFA is
shown in Tab. 1.

B. Additional Ablation Experiments
B.1. Ablation Experiments on Deformable Convo-

lutional Network

Deformable convolutional networks(DCN) [2] has inher-
ently advantages in capturing the geometric transformation
of objects, whose superior performance has been proved
in object detection [14]. We conduct a series of ablation
studies to verify that it is our proposed Offset-guided De-
formable Alignment (ODA) module rather than the geomet-
ric modeling capability of DCN that really achieves a sig-
nificant improvement in the detection task.

Since our OAFA only introduces a single DCN layer in
ODA to adapt the RGB feature positions, the compared ex-
periments are conducted exclusively in RGB modality with
a DCN layer. The results are presented in Tab. 2 and Fig. 3.



Table 1. The detailed structure information of OAFA with multi-level fusion architecture. The fusion level ranges from I to III. CBL is
the Convolutional Block Layer, CSP is the Cross Stage Partial Layer, SPPF is the Spatial Pyramid Pooling Fusion Layer, and DCN is the
Deformable Convolutional Network Layer.

Structure Level Layer Input Size Network Type Output Size

Unimodal Multiscale

Feature Extractor Bm

I

Focus (640, 640, 3/1) Conv2d, BatchNorm2d, SiLU (320, 320, 32)

CBL (320, 320, 32) Conv2d, BatchNorm2d, SiLU (160, 160, 64)

CSP1-1 (160, 160, 64) CBL*3, Bottleneck (160, 160, 64)

CBL (160, 160, 64) Conv2d, BatchNorm2d, SiLU (80, 80, 128)

CSP1-2 (80, 80, 128) CBL*3, Bottleneck*2 (80, 80, 128)

II
CBL (80, 80, 128) Conv2d, BatchNorm2d, SiLU (40, 40, 256)

CSP1-3 (40, 40, 256) CBL*3, Bottleneck*3 (40, 40, 256)

III

CBL (40, 40, 256) Conv2d, BatchNorm2d, SiLU (20, 20, 512)

CSP2-1 (20, 20, 512) CBL*3, Bottleneck (20, 20, 512)

SPPF (20, 20, 512) CBL*2, Maxpool*3 (20, 20, 512)

Decoupled Multimodal

Learning Module

Invariant Feature

Encoder Cm

I CBL (80, 80, 128) Conv2d, BatchNorm2d, SiLU (80, 80, 128)

II CBL (40, 40, 256) Conv2d, BatchNorm2d, SiLU (40, 40, 256)

III CBL (20, 20, 512) Conv2d, BatchNorm2d, SiLU (20, 20, 512)

Specific Feature

Encoder Sm

I
CBL (80, 80, 128) Conv2d, BatchNorm2d, SiLU (80, 80, 128)

CSP1-3 (80, 80, 128) CBL*3,Bottleneck*3 (80, 80, 128)

II
CBL (40, 40, 256) Conv2d, BatchNorm2d, SiLU (40, 40, 256)

CSP1-3 (40, 40, 256) CBL*3,Bottleneck*3 (40, 40, 256)

III
CBL (20, 20, 512) Conv2d, BatchNorm2d, SiLU (20, 20, 512)

CSP1-3 (20, 20, 512) CBL*3,Bottleneck*3 (20, 20, 512)

Spatial Offset

Modeling Module

Spatial Difference

Enhanced

I Spatial Attention (80, 80, 128) Conv2d, Sigmoid (80, 80, 128)

II Spatial Attention (40, 40, 256) Conv2d, Sigmoid (40, 40, 256)

III Spatial Attention (20, 20, 512) Conv2d, Sigmoid (20, 20, 512)

Channel Difference

Enhanced

I Channel Attention (80, 80, 128) Maxpool, Avgpool, RelU, FC*2, Sigmoid*2 (80, 80, 128)

II Channel Attention (40, 40, 256) Maxpool, Avgpool, RelU, FC*2, Sigmoid*2 (40, 40, 256)

III Channel Attention (20, 20, 512) Maxpool, Avgpool, RelU, FC*2, Sigmoid*2 (20, 20, 512)

Offset-guided Deformable

Alignment Module

I DCN (80, 80, 128) Conv2d*2, RelU*2, Sigmoid (80, 80, 128)

II DCN (40, 40, 256) Conv2d*2, ReLU*2, Sigmoid (40, 40, 256)

III DCN (20, 20, 512) Conv2d*2, ReLU*2, Sigmoid (20, 20, 512)

Decoupled Feature

Fusion Module

I Fusion (80, 80, 256) Conv2d (80, 80, 128)

II Fusion (40, 40, 512) Conv2d (40, 40, 256)

III Fusion (20, 20, 1024) Conv2d (20, 20, 512)

Detection Net

I Prediction (80, 80, 128) - (80, 80, 30)

II Prediction (40, 40, 256) - (40, 40, 30)

III Prediction (20, 20, 512) - (20, 20, 30)



Table 2. Ablation study on DCN. The baseline model is SLBAF-Net. DML denotes the decoupled multimodal learning submodule and
ODA denotes the offset-guided deformable alignment submodule. Best results are highlighted in bold.

Detectors w/ or w/o Decouple Car Truck Freight-car Bus Van mAP (%) ↑
Baseline

w/o Decouple
90.2 72.0 68.6 89.9 59.9 76.1

Baseline+DCN 90.2 68.1 67.5 89.9 61.4 75.4

Baseline+ODA 90.2 74.9 72.8 90.0 61.0 77.8

Baseline+DML
w/ Decouple

90.3 72.7 70.7 90.1 64.6 77.7

Baseline+DML+DCN 90.3 72.3 71.4 89.9 61.0 77.0

Baseline+DML+ODA 90.3 75.4 73.7 90.2 65.5 79.0

Table 3. Ablation study on DML loss. We exclusively remove the DML loss (Lsim, Lsim, and Lsem) from the overall loss function in our
model while preserving other components and settings. Best results are highlighted in bold.

Lsim Ldif Lsem Car Truck Freight-car Bus Van mAP (%) ↑

90.3 74.2 70.4 90.3 64.2 77.9

✓ 90.3 75.8 73.0 90.3 65.4 78.9

✓ 90.3 74.6 72.6 90.3 65.3 78.6

✓ 90.3 75.9 73.3 90.3 65.8 79.1

✓ ✓ 90.3 74.5 71.0 90.3 65.3 78.3

✓ ✓ 90.3 75.3 72.6 90.2 64.4 78.5

✓ ✓ 90.3 75.6 73.0 90.2 64.9 78.8

✓ ✓ ✓ 90.3 76.8 73.3 90.3 66.0 79.4

Firstly, in the baseline model, we replace a single convo-
lutional layer in the last layer of the RGB modality fea-
ture extraction network with a DCN layer. The second
row in Tab. 2 shows that the detection performance of the
above model is not improved compared with the baseline
model. It may be caused by the fact that the traditional
DCN layer increases uncertainties in RGB representations,
which is not suitable for our fusion network. In contrast,
our ODA leads to an increase of 1.7%. Then, we further
evaluate the performance of the model with a DCN layer
in the decoupled multimodal learning (DML) submodule.
Specifically, we replace the last convolutional layer of the
modality-invariant feature extraction network with a DCN
layer. Similar results are also observed in the model with
DML. It is worth mentioning that, as shown in Fig. 3b,
incorporating DCN into the modality-invariant feature ex-
traction network causes a training collapse for the Base-
line+DML+DCN model, owning to the unstable training of
DCN. The above experiments demonstrate that it is adaptive
feature alignment that leads to significant improvements in
the detection task. However, in the car and bus category, our
method fails to achieve noticeable improvement. The ob-
served phenomenon can be attributed to the adequate num-
ber of car in the training set as well as the distinguishable
representations of the bus, making the baseline model less
sensitive to the weakly misalignment of these targets. The
same phenomenon is also observed in Sec. B.2. For clarity,

the results in these categories are not highlighted in relative
tables.

B.2. Ablation Experiments on the Decoupled Mul-
timodal Learning Loss

To verify the effectiveness of the proposed DML loss
(Lsim, Lsim, and Lsem), we conduct a series of ablation
studies on the DroneVehicle dataset [10]. For comparison,
we only eliminate the DML loss from the total loss function
of our model and retain other components and settings.

As shown in Tab. 3, we observe that our model can
achieve an improvement of 1.0% in mAP only with the
similarity loss Lsim. The reason may be summarized as
that the Lsim can reduce the modality gap between RGB
and IR features, which is beneficial to the subsequent fu-
sion. At the same time, decoupled with the semantic loss
Lsem that could bring in more semantic information also
achieves satisfactory performance. Comparatively speak-
ing, the results with difference loss Ldif is slightly lower
than the model with Lsim and Lsem. The underlying rea-
sons can be inferred that despite highlighting the dissimi-
larity in multimodal features helps to capture complemen-
tary information, it is hard to guarantee the spatial distribu-
tion consistency of the modality-invariant features, giving
rise to false estimation of the offsets. Next, the modality-
specific features Fc

m would not have sufficient spatial in-
formation without Lsem, resulting in poor evaluation re-



Figure 4. Visualization of the intermediate results in OAFA. Take the features of level I for example. The size of the features is 80×80.
The concerned weakly misalignment targets are highlighted in the red and yellow boxes. The center point coordinates of the target in the
original IR features are marked around the target, which is the reference value for measuring the degree of feature deviation. The marks on
other features denote the relative position of its target center points to the counterpart in the original IR features.

sults. If Ldif or Lsim was removed, our model suffers from
varying degrees of decline due to the inadequate feature de-
coupling. Finally, the model with Ltotal achieves the best
performance, which demonstrates that the three losses can
complement each other and promote the model to achieve
better performance.

C. Visualization of the Intermediate Results

To demonstrate the efficacy of our method for offset
alignment, we present visualizations of the intermediate
feature results in Fig. 4. Take the targets in the red and yel-
low boxes as examples, as presented in Fig. 4a and Fig. 4b,
we find from the target position of the center point that
the weakly misalignment problem in images can indeed be
mapped to the corresponding features. It indicates that this
problem may have an impact on the subsequent fusion. Si-
multaneously, it can be seen from Fig. 4b and Fig. 4c that
there are modal differences in the original multimodal fea-

tures, and the modality-invariant features can alleviate this
difference. From the second row and the third row, we
can observe that with the help of the feature spatial offsets
(Fig. 4e), target positions in aligned RGB features (Fig. 4d
and Fig. 4g) is closer to its in IR features (the right side
of Fig. 4b) than in original RGB features (the left side of
Fig. 4c and Fig. 4f). The fused features (Fig. 4h) also re-
alize target position correction, validating the advantage of
our approach in addressing weakly misalignment issues.

D. Further Discussions to the Weakly Mis-
alignment Problem

D.1. The Comparison between Different Alignment
Methods

To thoroughly show the strength of our method to solve
the weakly misalignment problem, we compare OAFA with
some state-of-the-art multimodal alignment methods, in-



Table 4. Detection results (mAP, in %) of the image-level alignment methods and the feature-level alignment methods. Best results are
highlighted in bold. And the second one is marked with underline.

Detectors Level Car Truck Freight-car Bus Van mAP (%) ↑
HOPC [19]

Pixel-level
81.1 63.7 55 80.3 53.6 66.7

CGRP [12] 89.9 66.4 60.8 88.9 51.3 71.4
MBNet [22] 90.1 64.4 62.4 88.8 53.6 71.9

AR-CNN [20]

Feature-level

90.1 64.8 62.1 89.4 51.5 71.6
TSFADet [18] 89.9 67.9 63.7 89.8 54.0 73.1

C2Former [17] 90.2 68.3 64.4 89.8 58.5 74.2
Ours 90.3 76.8 73.3 90.3 66.0 79.4

Figure 5. Three examples of error results in the image-level align-
ment methods.

cluding the image-level alignment methods and the feature-
level alignment methods. The selected image-level align-
ment methods are unsupervised since the DroneVehicle
dataset [10] does not provide any pixel-level alignment an-
notations.

The image-level alignment methods are listed as:

• HOPC [19]: This is an automatic alignment method for
multimodal remote sensing data by capturing the struc-
tural similarity between images. It has been tested with a
variety of optical, LiDAR, SAR, and map data.

• CGRP [12]: This method aims to accomplish unsuper-
vised RGB-IR image alignment for the image fusion task.
To achieve this goal, a robust cross-modality generation-
registration paradigm is proposed to realize pixel-to-pixel
multimodal image alignment.

• MBNet [22]: Based on multimodal feature learning, this
method contrived a modality alignment module to pre-
dict offsets (dx, dy) for every pixel (x, y) of the sensed
modality. The alignment process is constrained by the

detection loss.
The feature-level alignment methods are listed as:

• AR-CNN [19]: This is the first work that tackles the
weakly misalignment problem in RGB-IR object detec-
tion. AR-CNN applied an end-to-end feature alignment
method in target regions to mitigate position shift.

• TSFADet [18]: This method is a further extension of AR-
CNN. Considering that the targets in UAVs images are al-
ways distributed with arbitrary orientation, TSFADet not
only aligned target features in positions but also in sizes
and angles.

• C2Former [17]: As an implicit alignment method,
C2Former designed an inter-modality cross-attention to
obtain the calibrated features by transformer, which has
the strong capability to model the pairwise correlations
between multimodal features.
We adapt these methods to the RGB-IR object detection

task. It is worth mentioning that for image-level alignment
methods, we utilize the registered images as the input to the
YOLOv5s detector. We find from Fig. 5 that the image-level
alignment methods sometimes lead to error results, espe-
cially in dark night scenarios. Thus, as shown in Tab. 4, the
results of the image-level alignment methods are not sat-
isfactory. As a feature-level method, our method has ex-
cellent performance in all categories and obtains average
accuracy of 79.4%, which is 5.2% higher than the second-
best results. It proves that our method is more suitable for
RGB-IR object detection task on UAVs under weakly mis-
alignment conditions.

D.2. Quantitative Comparison in Robustness to Po-
sition Shift

We show the quantitative results of the position shift ex-
periments. The scores align with the outcomes depicted in
the qualitative experiments of the position shift, which has
been exhibited in Sec.4.4. It can be observed from Tab. 5
that the worst result is 2.9% lower than the experiment with-
out deviation in OAFA, whereas it increases to 4.3% in the



Table 5. Quantitative results (mAP, in %) of the position shift experiments. On the left side of the ’/’ are the results in baseline, and the
right side are the results in our OAFA. The best results are highlighted in bold, while the worst results are marked with underline. The
results in blue are the performance degradation compared with the best results.

mAP(%) ↑
∆x

-15 -10 -5 0 5 10 15

∆y

-15 71.8(↓4.3%)/77.0 72.7/77.1 72.9/77.3 73.2/77.2 73.0/77.2 72.8/77.2 71.9/76.9

-10 72.9/77.1 73.6/77.6 74.7/77.8 74.9/78.0 74.6/77.7 74.3/77.4 72.8/76.6

-5 73.8/77.3 74.7/77.8 75.4/78.4 75.9/78.8 75.7/78.7 75.2/77.9 73.7/77.5

0 73.6/77.3 74.8/78.1 75.8/79.0 76.1/79.4 75.9/79.1 75.2/78.1 73.8/77.1

5 73.3/76.6 74.6/77.8 75.5/78.5 75.9/79.0 75.7/78.4 74.6/77.6 73.0/76.5(↓2.9%)

10 72.8/76.5(↓2.9%) 73.5/77.2 74.5/77.7 74.7/78.6 74.4/78.3 73.4/77.2 72.5/76.6

15 72.0/76.7 72.6/76.8 72.8/77.2 72.9/77.5 72.8/77.3 72.5/76.9 71.8(↓4.3%)/76.6

Table 6. Detection results (mAP, in %) on DroneVehicle dataset. Note that all detectors locate and classify vehicles with HBB heads. Best
results are highlighted in bold. And the second one is marked with underline.

Detectors Modality Car Truck Freight-car Bus Van mAP (%) ↑
RetinaNet [8]

RGB

81.6 50.4 40.6 86.2 40.3 59.8
FSSD [7] 77.8 55.2 46.5 85.4 47.2 62.8

YOLOv5s [6] 91.9 70.6 56.4 92.1 56.6 73.5
YOLOX [4] 96.1 74.2 55.4 94.8 64.3 75.0

YOLOv7-Tiny* [5] 96.1 75.9 57.4 95.2 57.1 76.3

RetinaNet [8]

IR

90.3 59.3 56.6 91.4 51.3 70.6
FSSD [7] 88.5 67.5 64.6 88.7 54.4 72.7

YOLOX [4] 98.0 96.6 65.7 94.5 57.0 78.4
YOLOv5s [6] 97.6 72.5 71.5 96.1 60.7 79.6

YOLOv7-Tiny* [5] 98.1 79.3 67.6 95.3 58.8 79.8

PIAFusion [11]

RGB+IR

- - - - - 60.5
LAIIFusion [15] 94.5 54.4 57.9 90.5 33.9 66.2

D-ViTDet [3] - - - - - 66.3
RISNet [13] - - - - - 66.4

GFD-SSD [21] 90.1 71.7 61.4 89.3 57.6 74.0
AFFCM [16] 90.1 73.4 64.9 89.9 64.9 76.6

ICAFusion [9] 98.4 76.3 75.1 96.4 65.7 82.4
SLBAF-Net [1] 98.5 76.9 77.3 96.4 67.6 83.3

Ours 98.5 77.8 77.2 96.8 69.6 84.0

baseline model. The results demonstrate that our method is
more robust to the weakly misalignment problem than the
baseline model.

E. The Horizontal-bounding-box Experiments

E.1. Quantitative Comparison

We conduct experiments on the DroneVehicle dataset to
verify the effectiveness of our method in the Horizontal-

bounding-box (HBB) detection task, as many superior fu-
sion detectors are trained with HBB annotations. To this
end, we transform the original OBB annotations into HBB
annotations and train the model with the same settings as
the OBB experiments. We similarly compare our method
with the state-of-the-art unimodal and multimodal object
detectors. For unimodal detectors, we choose five out-
standing methods for comparison, including RetinaNet [8],
FSSD [7], YOLOv5s [6], YOLOX [4], and YOLOv7-



Figure 6. Seven Examples of HBB detection results on the test set of DroneVehicle dataset under weakly misalignment conditions. The
confidence threshold is set to 0.25. The results of fusion methods are visual in IR images to correspond to the supervisory label. Red,
green, and pink rectangles represent car, freight-car, and truck targets, respectively. Objects correctly detected are represented in green
dashed circles, while incorrectly detected objects are represented in red dashed circles.

Tiny* [5]. As for multimodal fusion detectors, our method
is compared with PIAFusion [11], LAIIFusion [15], D-
ViTDet [3], RISNet [13], GFD-SSD [21], AFFCM [16],
ICAFusion [9], and SLBAF-Net [1]. The mAP results of the
different models are shown in Tab. 6. Our OAFA achieves
an mAP of 84.0%, which is 0.7% higher than the second-
best method. At the same time, it also performs the best

and suboptimal performances in each category. The results
demonstrate that our method can also achieve excellent per-
formance in the HBB detection task.

E.2. Qualitative Comparison

We also provide some visual HBB detection results on
the validation dataset in Fig. 6. Among the compared HBB



detection methods mentioned above, we select unimodal
YOLOv5s [6] and the baseline model SLBAF-Net as the
qualitative comparative model. It can be seen that our
OAFA is prone to correct detections in different scenarios
while the compared methods represent the error and missed
detections. It demonstrates that the method proposed in this
paper has more advantages in detection number and accu-
racy.
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