
This appendix is organized as follows:

7. Details on the methodology.
8. Details on the experimental setup.
9. Additional experiments.
10. Details on the annotation process and dataset analysis

7. Method details
7.1. Sinkhorn optimal transport

To acquire the optimal assignment from word features to
video frames, an assignment matrix Q is computed from
each video and ASR pair as shown in Figure 2(a). This
cross-model optimal transport mechanism is applied to as-
signment Q from the projected cross-model similarity P
between word tokens and each video frame, where P =
g(S)

N
f(V)> 2 RK⇥U . To compute the assignment ma-

trix, the text and video projection layers from the global
representation in Figure 2(c) are used to project multimodal
features into a common space for feature similarity calcu-
lation. To ensure that the word-to-frame assignment con-
tains more diversity instead of just saturated assignments to
a single video frame, we add a constraint that requires label
assignments to be equally distributed across various video
frames representing diverse object/action concepts. This is
achieved by restricting Qv to a transportation polytope Qv:
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�
Q 2 RU⇥K

+ | Q1K = 1
U 1U ,Q>1U = 1

K1K

 
, (2)

which enforces the soft-assignment distribution Q to assign
an equal marginal probability to each of the U frames in-
stead of converging to a single frame. The vector 1U repre-
sents one vector with dimension U ⇥ 1.

The next goal is to enforce this transportation polytope
Q. A solution for Q is now computed using the optimal
transport Sinkhorn-Knopp algorithm [7, 11] as shown in
Figure 2(b). The Sinkhorn-Knopp algorithm also normal-
izes the distribution of P as:

Q = Diag(↵) exp
�
P
"

�
Diag(�), (3)

where ↵ and � are scaling vectors that restrict Q to have
a uniform distribution across region assignment. " is a pa-
rameter that controls the smoothness of the mapping [7].

The T frames are then selected by the corresponding as-
signment Q from the frames with top T aggregated similar-
ity sum over each word for further training. Note that the
selection part P is from a trainable projection. While ac-
quiring a better word-to-region projection during training,
we hypothesize that the frame selection also benefits. The
respective frame selection strategy is evaluated in Table 5.

8. Experimental setup
8.1. Baseline details
MIL-NCE [36], which utilizes S3D [53] and word2vec [37]
to project two modalities into a common space, is cho-
sen as the standard baseline for this task; CoMMA [46],
the best-performing model for spatial representations in
self-supervised learning (we denote CoMMA† to repre-
sent the model that uses weights shared by the author3);
CLIP [38], an image-text model trained with transformer
architecture, is further applied as the backbone and trained
with [46] to construct CoMMA‡; GLIP [31] and Region-
CLIP [62], state-of-the-art image-text grounding models
that combine large-scale image caption pretraining and ob-
ject detection fine-tuning, which we consider weakly super-
vised as the bounding box proposal network was trained on
other human-annotated data. We further construct a strong
baseline out of the best methods for temporal and spatial
localization, MIL-NCE+RegionCLIP, where we use MIL-
NCE for temporal localization and RegionCLIP for spa-
tial grounding following the inference pipeline of Figure 3
without additional training.

8.2. Backbones and Training
We evaluate the proposed method on backbones, CLIP [38]
and S3D-word2vec [36]. We described the detailed setup as
well as the training in the following.
CLIP models. For both the visual and text backbone, we
use the pretrained weights from CLIP [38] with transformer
ViT-B/32 and fix the encoder. Both the visual and text en-
coder has a final embedding size of 512. We apply them
to video segments with 12-28 seconds, processing 1 frame
per second. An evaluation of how many frames to process
(identical to the number of seconds) is shown in Table 9.
We sampled the video with 5 fps. It shows the best results
when we start with 80 possible frames U (as described in
Section 3.2), from which T = 16 frames are selected for
training. Ablation of the number of frames T used for train-
ing is shown in Table 10. We used a batch size of B = 64
video clips.
S3D-word2vec models. For the video backbone, we
follow [46] and use S3D initialized by MIL-NCE on
HowTo100M [36] at the rate of 5 frames per second and fix
the video encoder. The global video clip features were max-
pooled over time and projected into embeddings of dimen-
sion 512. We used the mean-pooled S3D spatio-temporal
features to represent the global representation of the video
following the S3D architecture [53]. For the text feature,
we follow [35] using a GoogleNews pre-trained word2vec
model [37] and max-pooling over words in a given sentence
to acquire the text global feature. We follow [36] to use
the max-pooled word embedding to represent the sentence

3We thank the authors for providing code and weights.



(global representation) since there is no [CLS] token. Also,
the sentence feature is used for the query word selection in-
stead of the [CLS] token. We use a batch size of B = 96
video clips.
Training. For the training of both backbone settings, we
use an Adam optimizer [26] with a learning rate of 1e�4.
In the setting of fintining CLIP, we set a learning rate of
1e�7 for the CLIP backbone. The model is trained for 10
epochs on 4 V100 GPUs, which takes about two days.

8.3. Inference
Inference for the proposed model and CoMMA. For in-
ference in the case of temporal grounding, as shown in Fig-
ure 3(a), we first normalize the global feature for video and
text. We used a (temporal) threshold ✓ = 0.5 to separate
detections from the background. In spatial grounding, we
acquire an attention heatmap using the attention rollout [1]
described in Section 3.5. We set a spatial threshold ⌧ = 0.01
to create the mask, as shown in Figure 3(b). The choice of
this spatial threshold is evaluated in Table 12.
GLIP, RegionCLIP baseline inference. In spatial ground-
ing, we are given a text query and need to localize it in the
frame. GLIP and RegionCLIP predict multiple bounding
boxes corresponding to the text query. We select the pre-
dicted bounding box with the highest confidence score as
the prediction result. We use the center point of the pre-
dicted bounding box for the pointing game evaluation as the
model prediction. For mAP evaluation, we use the predicted
bounding box to compute IoU with the ground truth bound-
ing box. In spatio-temporal grounding, we input all possi-
ble action description labels as candidates similar to Figure
3(a). We pick the class with the highest confidence score
as the predicted label. If the model made no prediction, we
would predict it as “background”. The spatial inference is
the same as the spatial grounding setting.
TubeDETR, STCAT baseline inference. TubeDETR and
STCAT are spatio-temporal grounding models trained to
predict a single spatio-temporal tube per video. In both
cases, TubeDETR and STCAT, we use models trained on
the Vid-STG dataset with 448x448 resolution and evaluate
them for the task of spatial grounding. Since this dataset
contains mostly short videos (<30sec), we observed that
both methods will also only predict a trajectory tube in
this temporal range (<30sec), no matter how long the in-
put video is. To allow us to apply them to longer videos
(>30sec), we split the longer videos based on sliding win-
dows of 5-sec for better performance.
MIL-NCE, CLIP baseline inference. Both models are
trained based on global representations for both input
modalities, videos/images and text. We can, therefore, di-
rectly compute a sentence-to-video-frame similarity to per-
form the temporal grounding for Figure 3(a), following the
same process as the proposed method for temporal ground-

ing. For spatial grounding, we compute sentence-to-region
feature similarity. Both visual backbones produce a 7x7
grid feature. We normalize the sentence and region features,
then select a spatial threshold ⌧ = 0.5 to create the mask for
the mAP evaluation.

8.4. Evaluation metrics

(i) Spatio-temporal grounding in untrimmed video is
evaluated on our annotated GroundingYoutube dataset. We
combined the spatial and temporal grounding evaluation as
before [2, 28] to form the spatio-temporal evaluation. The
entire video and the respective pool of action instructions
were provided. The model needs to localize each action step
in temporal (start-time/end-time) and spatial (location in the
video) as described in Figure 3. We evaluate in two metrics:
IoU+Pointing game combines the evaluation setting from
the spatial grounding [2] and temporal grounding [28] met-
rics. For each video frame, the prediction is correct when
the model predicts the correct action for the frame. Also,
given the predicted action as a query, the maximum point
of the heatmap aims to lie within the desired bounding box.
We then compute the Intersection over Union (IoU) over
all the predictions with the GT to acquire the final score.
We also compute video mAP following previous evaluation
[15], where we set IoU threshold between GT and predicted
spatio-temporal tubes. A prediction is correct when it sur-
passes the IoU threshold. We then compute the mAP over
all classes. We form a 3D prediction mask following Figure
3 and compute IoU between our 3D heatmap and 3D tube.
(ii) Spatial grounding is given a text query description to
localize the corresponding region in the trimmed video. We
use GroundingYoutube, Youcook-Interaction, V-HICO, and
Daly for evaluation. This task is evaluated using the point-
ing game accuracy. Given the query text and video, we
compute the attention heatmap on the video as described in
Figure 3(b). If the highest attention similarity score lies in
the ground truth bounding box, the result counts as a “hit”
and counts as “miss” otherwise. The final accuracy is cal-
culated as a ratio between hits to the total number of pre-
dictions # hits

# hits+# misses . We report the mean average precision
(mAP) following the settings from V-HICO [32]. Given a
human-object category as the text query, we aim to localize
the spatial location in the video frame. The predicted lo-
cation is correct if their Intersection over-Union (IoU) with
ground truth bounding boxes is larger than 0.3. Since we
do not use any bounding box proposal tools or supervision,
we create an attention heatmap as described in Figure 3(b)
to create a mask for IoU computation. We follow [32] and
compute the mAP over all verb-object classes.
(iii) Temporal grounding provides videos with the respec-
tive actions and their ordering, including the background.
The goal is to find the correct frame-wise segmentation
of the video. We follow the inference procedure in [28]



to compute the alignment given our similarity input ma-
trix. The task is evaluated by intersection over detection
(IoD), defined as G\D

D the ratio between the intersection
of ground-truth action G and prediction D to prediction D,
and the Jaccard index, which is an (IoU) given as G\D

G[D .

9. Additional Experiments
9.1. Runtime analysis
We analyze the computational costs of sampling and loss.
We sample 16-second videos at a frame rate of 5 FPS (80
frames in total). We report the execution time for a sin-
gle batch (batch size = 64) averaged over 100 batches. For
the frame sampling strategy: (1) Random select 8 frames:
1.48s. (2) Optimal transport based selection of 8 frames out
of 64: 1.54s. (3) Entire 64 frames: 1.74s. The execution
time of our method is close to traditional random sampling
while capturing diverse visual concepts, which improves the
training process. For the global and local components: (1)
Global loss only: 1.1s. (2) Local loss only: 1.52s. (3) Both
losses: 1.54s. Computation of the local loss is more time-
consuming than the global loss due to its requirement for
features with finer granularity.

9.2. Single-action spatio-temporal grounding.
Current spatio-temporal detection and grounding datasets
[15, 22] usually aim to discriminate a single given action
class from the background class in a short clip. This differs
from our setup of spatio-temporal grounding in untrimmed
videos, which usually comprises a set of phrases that need
to be detected in a 3-5 min long video. To allow an eval-
uation of spatio-temporal grounding approaches based on
single phrase grounding, we construct a clip-level evalua-
tion where the clip varies from 9 sec to 60 sec. Given an
action step, we append the video segments before and after
the steps with the same time length of the action step to form
the final video clip. This results in 2,895 clips for the spatio-
temporal clip grounding evaluation. For each clip, the tem-
poral action intervals occupy 33% of corresponding videos,
which demonstrates the difficulty of the setting. In this
setting, instead of selecting the possible action step from
a pool, the ground truth action step was given as the text
query for spatio-temporal grounding. This allows us to di-
rectly compare with supervised spatio-temporal grounding
methods [23, 54] as described in Section 5.4. As shown in
Table 7, we observe that the baseline GLIP models achieve
a much better performance compared to Table 2. This is due
to the fact that this setting does not require the model to se-
lect the text query from the pool, which the GLIP model was
not trained to do. Moreover, we find that weakly supervised
methods, GLIP and RegionCLIP, show only limited abil-
ity to differentiate the queried action from the background,
which leads the model to ground the text query in most of

the frames. However, both demonstrate powerful localiza-
tion ability in foreground action segments, which results in
a decent performance. The fully-supervised trained models
(TubeDETR, STCAT) achieved a balance in localizing tem-
porally and spatially, resulting in the best performance on
this task.

9.3. Ablation and decision choices

We performed additional ablation studies using the CLIP
backbone without finetuning.
Attention architecture. We tested different architectures
by stacking the self-attention or cross-attention block in
the model to calculate contextualized local representations,
as shown in Figure 2(d). As shown in Table 8, we
found that the standard multimodal transformer architec-
ture (self+cross) to have the worst performance. Using two
cross-attention blocks was beneficial in incorporating more
cross-modal interaction between local features. Finally, in-
cluding a self-attention layer slightly improves the final rep-
resentations by encoding better single-modality representa-
tions.
Frames used for selection. As shown in Table 9, we per-
form an ablation study on the number of candidates frames
U used for training. We found that selecting 80 frames
(16 seconds) achieves the best performance, comprising the
useful video information in training while not including too
many irrelevant concepts that diverge from the action/object
in the ASR sentence.
Number of frames for training. We further evaluated the
impact of different numbers of frames T used for training.
As shown in Table 10, selecting fewer frames for training
significantly causes the performance to drop. We hypothe-
size that the model not only fail to capture the temporal dy-
namics with fewer frames but also loses some frames with
groundable objects in the sentence while training. We also
hypothesize that with a too large number of frames, more
irrelevant frames might be selected during training, which
decreases the performance.
Effect of audio in training and testing. Unlike text which
describes a discrete concept as a target to ground, audio
serves as a continuous representation that is highly relevant
to the temporal information. For example, we can deter-
mine an action started when we hear a “cracking” sound.
In Table 11, we tested our model using the additional au-
dio modality. For the audio branch, we compute log-mel
spectrograms and use a DAVEnet model [19] initialized by
MCN on HowTo100M [8] to extract audio features. We
extend the global and local loss pairs from VT to VT, VA,
and AT following [42]. We found when training and test-
ing with audio, the spatio-temporal result increases the tem-
poral performance while the spatial-only result remains the
same. This validates our assumption that audio contributes
more to temporal understanding. When we trained on audio



GroundingYoutube

Method Backbone DataSet Supervision Modality IoU+Point mAP
0.1 0.2 0.3 0.4 0.5 0.1:0.5

CoMMA* [46] S3D-word2vec HT250K Self VT 1.10 7.46 5.84 4.20 2.65 1.53 4.93
MIL-NCE [36] S3D-word2vec HT100M Self VT 12.41 45.91 32.33 15.35 3.70 2.56 19.54
Ours S3D-word2vec HT200K Self VT 19.46 51.95 40.31 26.81 16.27 7.81 28.63

CoMMA† [46] CLIP HT200M Self VT 2.64 8.94 6.89 5.47 4.18 2.67 5.63
CLIP [38] CLIP HT200K Self IT 11.34 43.28 30.64 11.20 3.10 1.94 18.03
RegionCLIP [62] ResNet-101 CC3M Weak IT 17.42 51.86 40.23 26.10 15.23 7.29 28.14
GLIP [31] Swin-L Cap24M Weak IT 18.15 52.61 41.83 26.93 17.23 8.46 29.41
Ours CLIP HT200K Self VT 20.81 53.24 42.96 29.17 20.36 11.84 31.51

TubeDETR [54] MDETR Vid-STG Full VT 26.43 63.47 50.95 38.23 28.31 19.34 40.06
STCAT [23] ResNet-101 Vid-STG Full VT 27.84 64.96 52.13 40.61 30.49 20.55 41.75

Table 7. Single-action spatio-temporal grounding in short videos. We compare spatio-temporal grounding approaches based on single
phrase grounding. To this end, we construct a clip-level evaluation based on the action segments of GroundingYouTube, where each action
segment varies from 9 sec to 60 sec. We append video segments before and after the annotated action with the same time length of the
action step to form the final video clip. This allows us to directly compare with supervised spatio-temporal grounding methods [23, 54].

Attention GroundingYT MiningYT YouCook-Inter.
Architecture Spatio-temporal Temporal Spatial

Self+Cross 15.4 18.7 54.1
Cross+Self 15.9 18.9 54.5
Cross+Cross 16.5 19.3 56.2
Cross+Self+Cross 17.1 19.9 57.1

Table 8. Ablation on different attention architecture

# of frames 60 80 100 120 140

GYT (Spatio-temporal) 16.4 17.1 17.0 16.8 16.1
YC-Inter (Spatial) 56.3 57.1 56.8 56.7 55.9

Table 9. Ablation of # of frames used for selection

Frame length 1 4 8 16 24

GYT (Spatio-temporal) 5.2 9.5 16.1 17.1 16.5
YC-Inter (Spatial) 31.1 48.2 55.5 57.1 56.1

Table 10. Effect of # video frames used for training

Train/test supervision VT/VT VAT/VT VAT/VAT

GYT (Spatio-temporal) 16.2 16.8 17.0
YC-Inter (Spatial) 53.9 53.6 53.8

Table 11. Effect of audio supervision in train and test

and tested without audio, the performance increased over
the VT model, showing that the audio serves as useful su-
pervision for better video/text representations.
Threshold for attention mask. As shown in Figure 3(b),
we apply a threshold to create a mask from the result of
attention rollout. Note that this threshold ⌧ is not a hyper-
parameter that affects the training or the model but simply
serves as a means to an end to compute the mAP scores.

Treshold Backbone 0.1 0.05 0.01 0.005 0.001

CoMMA* S3D-word2vec 0.76 0.90 0.93 0.91 0.86
Ours S3D-word2vec 15.35 15.88 16.22 16.34 16.12

CoMMA† CLIP 0.88 0.92 0.99 0.94 0.91
Ours CLIP 15.93 16.33 17.10 17.05 16.24

Table 12. Threshold for attention score on GroundingYoutube
mAP@0.4

GroundingYT MiningYT YC-Inter.
Spatio-temp Temporal Spatial

Mean-pooling 18.39 19.24 57.84
[CLS] 19.45 20.33 58.35

Table 13. Global representation ablation with CLIP. [CLS]
showed superior performance due to self-attention architecture.

GroundingYT MiningYT YC-Inter.
Spatio-temp Temporal Spatial

only Local loss 5.62 4.97 50.54
only Global loss 7.53 18.67 31.51
w/ Both loss 16.22 19.18 53.98

Table 14. Loss ablations with MIL-NCE (S3D). Results show a
similar trend as the CLIP backbone used in the main paper.

We did not systematically optimize this threshold, but in-
stead, Test different thresholds for attention scores for all
relevant models (COMMA, ours) using the spatio-temporal
grounding mAP IoU@0.4 on our GroundingYoutube dataset
as shown in Table 12. We find 0.01 to be a reasonable
threshold among all models, performing best on COMMA
and giving at least the second best results for the proposed
model.
Mean pooling for global features We also tried mean pool-
ing over all tokens for CLIP to replace [CLS] for the global
feature. As shown in the tab. 13, [CLS] outperforms mean
pooling in our 3 datasets. We attribute this to the fact that
[CLS] was calculated by self-attention, which will automat-
ically select important tokens, whereas mean pooling treats
all tokens with the same importance.
Loss ablation with MIL-NCE(S3D) We tested the local vs.



global loss on top of S3D (initialized by MIL-NCE, see Tab.
14) showing similar behavior compared to CLIP.(shown in
Table 6 in the main paper)

10. GroundingYoutube Annotation
The data annotation was divided into three phases: During
Phase I (Sec. 10.1, a graphical user interface (UI) and the
task description were developed. In Phase II, the dataset
was given to the annotators to generate the key points (Sec.
10.1). In Phase III, a manual quality control step was per-
formed (Sec. 10.2).

10.1. Development of the graphical user interface
and task description

The annotation of a large amount of data is often one of the
most expensive aspects of a machine learning pipeline de-
sign, which is why the annotation time per datum should be
kept as short as possible. There are two points that can be
optimized, (1) the training or the task “message” for the an-
notators and (2) the graphical user interface by minimizing
interaction times.

Figure 6. A screenshot of our simplified annotation interface.
On the top, the annotation task is described in simple and short
words to save reading time. To make interacting with the UI as
intuitive as possible, actions are limited to simple button clicks
and setting the key point by clicking on the image.

While tasks are usually formulated in such a way that no
ambiguities arise, i.e. all possible edge cases are somehow
covered, and simple words are used, in this case, we made a
conscious decision to choose questions as short as possible,
and that would give the annotator room for interpretation.
We did this because it was hard to predict where people
would actually locate actions in images. We also created a
1 min 30 sec long user training video where we demonstrate
the task using exemplary keypoint annotations and explain
how to use the UI.

Our annotation UI was designed with a special focus to
keep it as intuitive as possible and reducing the interaction

time. Our UI only provided five functionalities (set/unset a
keypoint, undo the last image, image can’t be solved, and
image is corrupt) which were clearly described in text but-
tons (see Figure 6). Further, to reduce the cognitive load
of our workers, images were presented in the form of work
packages, each containing 25 images. Hence, we could en-
sure that completing a task would take no longer than 6 min-
utes.

The annotation of all 26, 987 images was performed with
five distinct repeats per image, resulting in 134, 935 labels
in total. All labels were generated by 13 professional an-
notators in total, which took them 5s in average per im-
age. However, it should be noted that the number of images
where an annotator placed a keypoint differs along all the
workers (see Figure 7) and that the vast majority of all im-
ages have been answered by five annotators only. Examples
are shown in Figure 8.

Figure 7. Number of keypoints per image. It can be seen that
48% of the data has all 5 key points and 19% has not a single
annotation

During the annotation, professional annotators were
given a short instruction video at the beginning and then
asked to click on the center of the given action without addi-
tional instructions. They were further free to choose “can’t
answer” if they could not locate the action, e.g., at the be-
ginning and end of the clip. Thus, the number of available
key points per image differs, and we choose majority vot-
ing to determine whether an action is present, resulting in
new, refined temporal boundaries compared to the original
annotation.

We found that the point-wise annotation resulted in
roughly three distinct patterns, which depend on the cap-
tured scenario, as shown in Figure 9. In the case of half por-
trait or even wider shots in Figure 9a, annotations are highly
locally centered. We further found that in some cases, the



(a) Can’t solve (b) Single point

(c) Four points (d) Five points

Figure 8. Sample annotations. The purple point represents the
center point of the annotations in the frame. 48% of the data has
all 5 key points, and 19% has not had a single annotation.

(a) Wider shot (b) Flow action (c) Split to two

Figure 9. Example of keypoint annotations under different
conditions.

point annotation can also represent the flow of the action,
e.g., pouring oil in Figure 9b, or even split into two separate
clusters in Figure 9c.

10.2. Quality control

Since the label quality of the datasets used is a critical factor
in the performance of machine learning models, we verified
the correctness of a subset of our images using an expe-
rienced annotation specialist for 1, 026 randomly selected
frames. To evaluate the data quality, we evaluate the agree-
ment between the annotation specialist and the annotations
provided by the annotators. To this end, we considered an
annotation as a false positive if three annotators or more
have set a key point, although no action can be seen in the
image, and as a false negative if three annotators or more
have not set a key point, even though an action can be
seen in the image. The entire sample was assessed using
these criteria, with the specialist disagreeing with the anno-
tators in only a total of 1.1% ± 3% (FP: 0.7% ± 3%, FN:
0.4% ± 3%). We also found that annotations significantly
diverted in terms of spread. Namely, wider shots tend to
be highly centered, whereas zooming in together with the
usage of larger objects such as a pan or a spatula results
in more widespread key points. We also analyzed how of-

ten those cases occur and found that 14.0% of the selected
frames show a widespread pattern.

Sample size calculation To this end, we first needed a
representative subset of NS images of our data. We calcu-
lated the required sample size based on the following two
formulas:

N0 =
z2

✏2
· p · (1� p) (4)

where ↵ is the confidence interval, p the expected probabil-
ity of the appearance of a quality aspect (e.g., widespread
answers), epsilon is the accepted error margin, and Q(↵)
is the percent point function of a normal distribution and
z = Q(1� ↵

2 ).
As N0 would be the required sample size for an infinitely

large population, we applied the finite population factor that
results from sampling without replacement from a finite
population.

NS =
(N0 ·N)

N0 + (N � 1)
(5)

where N is the total number of images.
We set ↵ = 95%, epsilon = 3%, and our sample size

of N = 26, 987. As the probability of the quality aspect is
unknown, we set p = 50%, which resulted in 1, 026 being
checked for quality control.

Distribution Type mAP@0.4
Widespread actions 18.34
Saturated actions 15.96
Total 17.10

Table 15. Performance on the annotation distribution types of
widespread v.s. saturated.

10.3. Dataset usage for evaluation
How to derive bounding box? We derive bounding boxes
by adding a constant distance (0.15⇥frame width in width,
0.15⇥frame height in height) to the boundaries of a union
of all annotated points (as shown in Figure 4). Since point
annotations may be scattered in the image or, conversely,
gathered around a point, the output bounding boxes will
vary in size over time and for different actions. We man-
ually check the auto-generated bounding boxes and adjust
the bounding box when needed.
Performance on widespread and saturated action. We
evaluate the performance of different action distributions
using the spatio-temporal grounding mAP IoU@0.4 setting.
We define widespread actions to have an area larger than a
certain threshold A. Here, we set A = 60, 000 pixels. As
shown in Table 15, the performance of the widespread ac-
tions was higher since it had a higher tolerance of spatial
localization error.


