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Method ‘5 =060=0.016=0.0256§ =0.05 ID R-Rel
AFNet [0.092 0.125 0.155 0.164 0.165 0.168
AFNet-Pose|0.093  0.123 0.142 0.154 0.164 0.160

Table 9. Ablation results for pose correction module on AbsRel
error on DDAD [12].

6. Robustness under real-world noise poses

Because the monocular version of ORBSLAM2[25]
crushes severely on some sequences, we compare it on se-
quences that perform moderately, and only evaluate the im-
age sequence before it crushes. As shown in Table 10, the
results of the remaining sequences in the KITTI Odometry
dataset also show the robustness of our AFNet.

7. Dynamic object region mask

We claim that our adaptive fusion module can alleviate the
problem that multi-view methods cannot handle dynamic
objects, so we compared the performance in the region of
dynamic objects on the front view camera on DDAD [12].
In order to obtain the mask of the dynamic object region, we
first obtain the region mask1 through instance segmentation
that is likely to have dynamic objects, such as cars, pedes-
trians, bicycles, etc. Then, in the time sequence, the mask1
region of the previous image and the next image are warp-
ing to the current image, and the SSIM similarity scores are
calculated with the current image. The region with the simi-
larity score less than 0.7 is taken as the final dynamic object
region mask.

8. Pose Correction Module

Method. Because the prediction of multi-view branch de-
termines the upper limit of the final accuracy of the sys-
tem, we propose the pose correction module to adaptively
replace the input noisy pose with the pose predicted by
Posenet [17] into multi-view branch and AF module for
further accuracy improvement. Specifically, we input the
features F'; 4 extracted from the feature extraction network
into the decoder part of Posenet to obtain the predicted Eu-
ler angles 7; ,req and translation ¢; ,,.cq between the refer-
ence and the i-th source cameras. The Euler angles are con-
verted to the rotation matrix R; j,,..q for warping. Then the
source images are warped according to the predicted R, ¢
and the input R, ¢ respectively as in Section 3.3 in paper,

, n—1 , n—1

denoted as {I i p,.ed} and {I i mput} . The differ-
’ = ’ i=1

ence is that the depth used in this warping is single-view

prediction dj, since it is not associated with pose. The
SSIM similarity scores between reference image I and

. . , n—1 n—1
warping images {I i,pmd} are cal-

i—1 and {I;,input} i—1
culated respectively, and thze_corresponding R,zt_ with large
scores are taken as the input of multi-view branch and the
adaptive fusion module.

Ablation study. To improve the depth accuracy when
pose degradation is severe, we propose the pose correc-
tion module for AFNet, denoted as AFNet-Pose. As shown
in Table 9, under different intensities of the pose noise 9,
AFNet-Pose has a further improvement when the pose is
noisy compared with AFNet, especially 6 = 0.025 has a
8.4% improvement on AbsRel error.

9. Parameter comparison

In order to prove that the effectiveness of our method is
not obtained by parameter stacking, we compare the per-
formance of our method with the current single-view and
multi-view fusion methods and classical single-view meth-
ods. As shown in Table 11, our AFNet with ConvNeXt [22]
backbone has the highest accuracy, but the number of pa-
rameters is larger than [43], so we replace the ConvNeXt
backbone with a lighter backbone MobileNetV2 [29]. It
can be seen that our AFNet(MobileNetV2) has the high-
est accuracy and the lowest number of network parameters
compared with other methods.



Sequence 00 06 07
Pose ORB2 ORBI1 ORB2 ORB1 ORB2 ORBI1
(ATE=0.92)  (ATE=7.15) (ATE=0.69)  (ATE=13.8) (ATE=0.48)  (ATE=2.91)
MoRec[35] | 0.054  0.063 0.388 | 0.063  0.078 0.373 | 0.053  0.058 0.416
IterMVS[34] | 0.058  0.067 0.114 | 0.043  0.052 0.093 | 0.064 0.075 0.128
MaGNet[1] | 0.056  0.060 0.066 | 0.039  0.044 0.050 | 0.062  0.066 0.073
AFNet 0.052  0.054 0.058 | 0.039  0.041 0.044 | 0.055  0.058 0.063

Table 10. Performance comparison under Ground Truth poses and SLAM system poses (ORB1 and ORB2 represents the monocular
version and stereo version of ORBSLAM?2[25] respectively) on KITTI [11] Odometry dataset. ATE represents the absolute trajectory error

between the estimated poses and the Ground Truth poses. The reported numbers are AbsRel error.

Type Model | DDAD [12] KITTI[11] | parm(M) |
AbsRel] SqRel] RMSE| | AbsRell SqRel|l RMSE]

Single BTS [19] 0.169 2.81 11.85 0.059 0245  2.756 112.8
View AdaBins [2] 0.164 2.66 11.08 0.058 0.190  2.360 78.0
MVS2D [43] 0.132 2.05 9.82 0.058 0.176 2277 24.4
Fusion MaGNet [1] 0.112 1.74 9.23 0.054 0.162  2.158 76.4
Methods | AFNet(MobileNetV2) | 0.091 1.45 7.28 0.040 0.124 1.751 13.9
AFNet(ConvNeXt) 0.088 1.41 7.23 0.039 0.121  1.743 46.1

Table 11. Performance comparison on DDAD [12] and KITTI [11], our AFNet has higher accuracy and fewer network parameters.
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