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1. Datasets
As stated in the main paper, we applied three types of
shapes, chair, table and lamp from PartNet [3] dataset in our
experiments. We use the random mixing method discussed
in the main paper to create our training and testing data. In
this section, we discuss more details about our datasets.

Data statistics In the main paper, we have described our
approach to generate 3D part grouping datasets. We provide
detailed statistics of our 3D part grouping datasets in the
table below:

Dataset Mixed Num. Train Mixed Set Test Mixed Set

Chair
2 2381 329

3 1032 139

total 3413 468

Table
2 3160 471

3 1351 208

total 4511 679

Lamp
2 1352 209

3 620 90

total 1972 299

Table 1. The detailed statistics of our mixed part datasets.

Statistics for the Number of Parts We present the de-
tailed statistics for the number of parts in the constructed
mixed part sets in Fig. 1. In this figure, the statistics for
both training and testing datasets of the three shapes are
shown. The horizontal axis represents the number of parts
in a single mixed part set, while the vertical axis indicates
the quantity of the corresponding part sets in the datasets.
For the chair and table datasets, the maximum number of
parts exceeds 50; however, for the lamp dataset, this num-
ber is only 30. Most part sets in the chair and table datasets

contain 10 to 35 parts, while the majority of part sets in the
lamp dataset include 5 to 17 parts.

2. More Details about Baselines

We roughly introduce our baselines in the main body, and
more details about them are discussed here.

2.1. GRU-Mask

In this baseline, we employ the same 3D encoding tech-
nique (i.e., PointNet [4]) as G-FARS uses. Following the
PointNet, we utilize a GRU to sequentially encode the in-
put parts. The GRU enables us to capture the relationships
among all parts. Finally, we apply an MLP to generate a
mask that represents all the selection methods for the parts.

The quantitative and qualitative comparisons demon-
strate that this method achieves the goal of 3D part group-
ing to some extent. It can generate all the selection vectors
without relying on auto-regressive inference. However, a
drawback of this method is the necessity to predetermine
the output size of the MLP during network design, which
limits the number of groups to this predetermined number.

2.2. Comp-Net

The idea of Comp-Net is to compare two parts and identify
whether they can be grouped together. To implement this
concept, we employ a ’dual PointNet’ structure. The first
PointNet encodes all the input parts, while the second one
is tasked with the goal of part comparison. The output of
the second PointNet is a boolean value, indicating whether
two parts can be grouped together.

Based on the results discussed in the main paper and sup-
plementary materials, we see that this method is a feasible
approach for the 3D part grouping task. However, a disad-
vantage of this approach is that Comp-Net is only trained
to compare any two parts. This means it struggles to un-
derstand the relationships among multiple parts (more than
two parts).
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Figure 1. The statistics for the number of parts in the mixed part set. The horizontal axis is the number of parts in one mixed part set, and
the vertical axis represents the quantity of the mixed part sets which include the corresponding number of parts.

2.3. Variants of G-FARS

We present three variants of G-FARS in our main pa-
per: G-FARS-CG, G-FARS-R, and G-FARS-T. As stated
in the main paper, we modify the approach for modeling
the score function for these variants. Specifically, we at-
tempt to model the score function as Sθ = ∇c log pt(c

m
n |

GNN(Fn
P , fm)), where fm represents the encoded feature

for the mth part in the part set, and cmn denotes the corre-
sponding selection boolean value for this single part. The
GNN is implemented using an EdgeConv-based structure.
G-FARS-CG, G-FARS-R, and G-FARS-T apply an MLP,
ResNet [1], and Transformer [6], respectively, to learn the
new score function. In these variants, we separate the GNN
from the score function, aiming to determine whether the G-
FARS framework can be effectively adapted to score func-
tions modeled in this manner. Furthermore, we seek to ex-
plore whether applying better architectures can enhance the
network’s performance under this new modeling approach.

3. Experimental details

Training details In our experiments, the optimizer ap-
plied for training is Adam [2]. The learning rate is set as
10−3, and the batch size is set as 16. In the training proce-
dure, we select the best checkpoints for each dataset.

Sampling details As mentioned in our main paper, we
use Predictor-Corrector sampler [5] for both selection vec-
tor sampling and pose matrix sampling. The parameters for
both samplers are set as T = 1.0, σ = 25.0, C = 1. The
sampling step N is set as 500.

4. Additional Experiments

4.1. Category Mixing Testing

In this experiment, we mix all three categories (chair, ta-
ble, and lamp) and test the performance of G-FARS on the
mixed-category dataset. The results are shown in Table 2.
Surprisingly, we find that the performance on this mixed-
category dataset is even better than that on single-category
data. We infer that this improvement is due to two main rea-
sons: 1. The mixing of categories results in a larger dataset,
which may lead to better generalization; 2. Parts become
more distinguishable when mixed together (e.g., chair parts
versus lamp parts).

Precision Recall F1

0.896 / 0.866 0.804 / 0.792 0.84 / 0.827

Table 2. Results on all mixed categories data



Figure 2. The full comparison for Fig. 4 of the main paper.

4.2. Generalization to Unseen Categories

To further verify the generalization ability of our algorithm
for unseen category objects, we conducted an experiment,
the results of which are shown in Table 3. In this exper-
iment, the model is trained on the chair dataset but tested
on the table dataset. Although the performance is lower
than that of the model trained and tested on the same ta-
ble dataset, it is still capable of grouping parts from unseen
categories. This demonstrates that our algorithm can gener-
alize to a certain extent to object types it has not previously
encountered.

Precision Recall F1

0.766 / 0.716 0.697 / 0.685 0.717 / 0.7

Table 3. Testing on Table with the model trained on Chair.

4.3. More Qualitative Results

In Fig. 2, we present the full comparison for the Fig. 4 of
the main paper. The full results indicate that the baseline

methods struggle to accurately group the 3D parts. Besides,
we also present additional qualitative comparisons in Fig. 3.
The figure shows that our framework is able to correctly
group most part sets, while it is difficult for other baselines
to obtain the correct groups. This result proves the effec-
tiveness of our proposed method.

4.4. Additional Results of Noisy Part Removal

We demonstrate additional results of noisy part removal
task in Fig. 4. The figure shows that our framework can
remove noisy parts from the given part sets in a zero-shot
manner.
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