
Supplementary Material
Putting the Object Back into Video Object Segmentation

Ho Kei Cheng1 Seoung Wug Oh2 Brian Price2 Joon-Young Lee2 Alexander Schwing1

1University of Illinois Urbana-Champaign 2Adobe Research
{hokeikc2,aschwing}@illinois.edu, {seoh,bprice,jolee}@adobe.com

The supplementary material is structured as follows:
1. We first provide visual comparisons of Cutie with state-of-the-art methods in Section A.
2. We then show some highly challenging cases where both Cutie and state-of-the-art methods fail in Section B.
3. We analyze the running time of XMem and Cutie in Section C.
4. To elucidate the workings of the object transformer, we visualize the difference in attention patterns of pixel readout v.s.

object readout, feature progression within the object transformer, and the qualitative benefits of masked attention/object
transformer in Section D.

5. We present additional details on BURST evaluation in Section E.
6. We list options for adjusting the speed-accuracy trade-off without re-training, comparisons with methods that use external

training, additional quantitative results on YouTube-VOS 2018 [1]/LVOS [2], and the performance variations with respect
to different random seeds in Section F.

7. We give more implementation details on the training process, decoder architecture, and pixel memory in Section G.
8. Lastly, we showcase an interactive video segmentation tool powered by Cutie in Section H. This tool will be open-sourced

to help researchers and data annotators.

A. Visual Comparisons
We provide visual comparisons of Cutie with DeAOT-R50 [3] and XMem [4] at youtu.be/LGbJ11GT8Ig. For a fair comparison,
we use Cutie-base and train all models with the MOSE dataset. We visualize the comparisons using sequences from
YouTubeVOS-2019 validation, DAVIS 2017 test-dev, and MOSE validation. Only the first-frame (not full-video) ground-truth
annotations are available in these datasets. At the beginning of each sequence, we pause for two seconds to show the first-frame
segmentation that initializes all the models. Our model is more robust to distractors and generates more coherent masks.

B. Failure Cases
We visualize some failure cases of Cutie at youtu.be/PIjXUYRzQ8Q, following the format discussed in Section A. As discussed
in the main paper, Cutie fails in some of the challenging cases where similar objects move in close proximity or occlude each
other. This problem is not unique to Cutie, as current state-of-the-art methods also fail as shown in the video.

In the first sequence “elephants”, all models have difficulty tracking the elephants (e.g., light blue mask) behind the big
(unannotated) foreground elephant. In the second sequence “birds”, all models fail when the bird with the pink mask moves
and occludes other birds.

We think that this is due to the lack of useful features from the pixel memory and the object memory, as they fail to
disambiguate objects that are similar in both appearance and position. A potential future work direction for this is to encode
three-dimensional spatial understanding (i.e., the bird that occludes is closer to the camera).

C. Running Time Analysis
We analyze the total runtime of XMem and Cutie in Tab. S1, testing on a single video with a 2080Ti. We synchronize and
warm up properly to get accurate timing; small deviations might arise from minor implementation differences and run-time
variations. We note that the speedup is mostly achieved by using a lighter decoder.
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XMem Cutie-base Cutie-small

Query encoder 0.861 0.851 0.295
Mask encoder 0.143 0.145 0.142
Pixel memory read 0.758 0.514 0.514
Object memory read - 0.913 0.894
Decoding 2.749 0.725 0.700

Table S1. Total running time (s) of each component in XMem and Cutie.

Input image Target object mask Pixel attention map Object query attention map

Figure S1. Comparison of foreground attention patterns between pixel attention with object query attention. In each of the three examples,
the two leftmost columns show the input image and the ground-truth (annotated by us for reference). The two rightmost columns show the
attention patterns for pixel attention and object query attention respectively. Ideally, the attention weights should focus on the foreground
object. As shown, the pixel attention has a broader coverage but is easily distracted by similar objects. The object query attention’s attention
is more sparse (as we use a small number of object queries), and is more focused on the foreground. Our object transformer makes use of
both: it first initializes with pixel attention and restructures the features iteratively with object query attention.

D. Additional Visualizations

D.1. Attention Patterns of Pixel Attention v.s. Object Query Attention

Here, we visualize the attention maps of pixel memory reading and of the object transformer, showing the qualitative difference
between the two.

To visualize attention in pixel memory reading, we use “self-attention”, i.e., by setting k = q ∈ RHW×Ck
. We compute

the pixel affinity Apix ∈ [0, 1]HW×HW , as in Equation (9) of the main paper. We then sum over the foreground region along
the rows, visualizing the affinity of every pixel to the foreground. Ideally, all the affinity should be in the foreground – others
are distractors that cause erroneous matching. The foreground region is defined by the last auxiliary mask ML in the object
transformer.

To visualize the attention in the object transformer, we inspect the attention weights AL ∈ RN×HW of the first (pixel-to-
query) cross-attention in the last object transformer block. Similar to how we visualize the pixel attention, we focus on the
foreground queries (i.e., first N/2 object queries) and sum over the corresponding rows in the affinity matrix.

Figure S1 visualizes the differences between these two types of attention. The pixel attention is more spread out and is
easily distracted by similar objects. The object query attention focuses on the foreground without being distracted. Our object
transformer makes use of both types of attention by using pixel attention for initialization and object query attention for
restructuring the feature in every transformer block.
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Image M1 M2 M3 Ground-truth

Figure S2. Visualization of auxiliary masks Ml in the l-th object transformer block. At every layer, matching errors are suppressed (pink
arrows) and the target object becomes more coherent (yellow arrows). The ground-truth is annotated by us for reference.
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Figure S3. Comparisons of Cutie with/without masked attention. While both work well in simple cases, masked attention helps to
differentiate similarly-looking objects.

D.2. Feature Progression in the Object Transformer

Figure S2 visualizes additional feature progressions within the object transformer (in addition to Figure 4 in the main paper).
The object transformer helps to suppress noises from low-level matching and produces more coherent object-level features.

D.3. Benefits of Masked Attention/Object Transformer

Figure S3 qualitatively compares results with/without using masked attention – while both work well for simpler cases, masked
attention helps in challenging cases with similar objects. Figure S4 visualizes the benefits of the object transformer. Using the
object transformer leads to more complete and accurate outputs.

E. Details on BURST Evaluation
In BURST [5], we update the memory every 10th frame following [4]. Since BURST contains high-resolution images (e.g.,
1920×1200), we downsize the images such that the shorter edge has no more than 600 pixels instead of the default 480 pixels
for all methods. Following [5], we assess Higher Order Tracking Accuracy (HOTA) [6] on common and uncommon object
classes separately.
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Figure S4. Top-to-bottom: Without object queries, Cutie’s default model, and ground-truth. The leftmost frame is a reference frame.

For better performance on long videos, we experiment with the long-term memory [4] in addition to our default FIFO
memory strategy. The long-term memory is a plug-in addition to our pixel memory – it routinely compresses the attentional
“working memory” into a long-term memory storage instead of discarding them as in our first-in-first-out approach. The
long-term memory can be adopted without any re-training. We follow the default long-term memory parameters in XMem [4]
and present the improvement in the main paper.

F. Additional Quantitative Results
F.1. Speed-Accuracy Trade-off

We note that the performance of Cutie can be further improved by changing hyperparameters like memory interval and the
size of the memory bank during inference, at the cost of a slower running time. Here, we present “Cutie+”, which adjusts the
following hyperparameters without re-training:
1. Maximum memory frames Tmax = 5 → Tmax = 10
2. Memory interval r = 5 → r = 3
3. Maximum shorter side resolution during inference 480 → 720 pixels
These settings apply to DAVIS [7] and MOSE [8]. For YouTubeVOS, we keep the memory interval r = 5 and set the maximum
shorter side resolution during inference to 600 for two reasons: 1) YouTubeVOS is annotated every 5 frames, and aligning the
memory interval with annotation avoids adding unannotated objects into the memory as background, and 2) YouTubeVOS
has lower video quality and using higher resolution makes artifacts more apparent. The results of Cutie+ are tabulated in the
bottom portion of Table S2.

F.2. Comparisons with Methods that Use External Training

Here, we present comparisons with methods that use external training: SimVOS [17], JointFormer [11], and ISVOS [13] in
Table S2. Note, we could not obtain the code for these methods at the time of writing. ISVOS [13] does not report running
time – we estimate to the best of our ability with the following information: 1) For the VOS branch, it uses XMem [4] as
the baseline with a first-in-first-out 16-frame memory bank, 2) for the instance branch, it uses Mask2Former [15] with an
unspecified backbone. Beneficially for ISVOS, we assume the lightest backbone (ResNet-50), and 3) the VOS branch and the
instance branch share a feature extraction backbone. Our computation is as follows:
1. Time per frame for XMem with a 16-frame first-in-first-out memory bank (from our testing): 75.2 ms
2. Time per frame for Mask2Former with ResNet-50 backbone (from Mask2Former paper): 103.1 ms
3. Time per frame of the doubled-counted feature extraction backbone (from our testing): 6.5 ms
Thus, we estimate that ISVOS would take (75.2+103.1-6.5) = 171.8 ms per frame, which translates to 5.8 frames per second.

In an endeavor to reach a better performance with Cutie by adding more training data, we devise a “MEGA” training
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MOSE DAVIS-17 val DAVIS-17 test YouTubeVOS-2019 val

Method J&F J F J&F J F J&F J F G Js Fs Ju Fu FPS

SimVOS-B [9] - - - 81.3 78.8 83.8 - - - - - - - - 3.3
SimVOS-B [9] w/ MAE [10] - - - 88.0 85.0 91.0 80.4 76.1 84.6 84.2 83.1 - 79.1 - 3.3
JointFormer [11] - - - - - - 65.6 61.7 69.4 73.3 75.2 78.5 65.8 73.6 3.0
JointFormer [11] w/ MAE [10] - - - 89.7 86.7 92.7 87.6 84.2 91.1 87.0 86.1 90.6 82.0 89.5 3.0
JointFormer [11] w/ MAE [10] + BL30K [12] - - - 90.1 87.0 93.2 88.1 84.7 91.6 87.4 86.5 90.9 82.0 90.3 3.0
ISVOS [13] - - - 80.0 76.9 83.1 - - - - - - - - 5.8∗

ISVOS [13] w/ COCO [14] - - - 87.1 83.7 90.5 82.8 79.3 86.2 86.1 85.2 89.7 80.7 88.9 5.8∗

ISVOS [13] w/ COCO [14] + BL30K [12] - - - 88.2 84.5 91.9 84.0 80.1 87.8 86.3 85.2 89.7 81.0 89.1 5.8∗

Cutie-small 62.2 58.2 66.2 87.2 84.3 90.1 84.1 80.5 87.6 86.2 85.3 89.6 80.9 89.0 45.5
Cutie-base 64.0 60.0 67.9 88.8 85.4 92.3 84.2 80.6 87.7 86.1 85.5 90.0 80.6 88.3 36.4

Cutie-small w/ MOSE [8] 67.4 63.1 71.7 86.5 83.5 89.5 83.8 80.2 87.5 86.3 85.2 89.7 81.1 89.2 45.5
Cutie-base w/ MOSE [8] 68.3 64.2 72.3 88.8 85.6 91.9 85.3 81.4 89.3 86.5 85.4 90.0 81.3 89.3 36.4
Cutie-small w/ MEGA 68.6 64.3 72.9 87.0 84.0 89.9 85.3 81.4 89.2 86.8 85.2 89.6 82.1 90.4 45.5
Cutie-base w/ MEGA 69.9 65.8 74.1 87.9 84.6 91.1 86.1 82.4 89.9 87.0 86.0 90.5 82.0 89.6 36.4
Cutie-small+ 64.3 60.4 68.2 88.7 86.0 91.3 85.7 82.5 88.9 86.7 85.7 89.8 81.7 89.6 20.6
Cutie-base+ 66.2 62.3 70.1 90.5 87.5 93.4 85.9 82.6 89.2 86.9 86.2 90.7 81.6 89.2 17.9
Cutie-small+ w/ MOSE [8] 69.0 64.9 73.1 89.3 86.4 92.1 86.7 83.4 90.1 86.5 85.4 89.7 81.6 89.2 20.6
Cutie-base+ w/ MOSE [8] 70.5 66.5 74.6 90.0 87.1 93.0 86.3 82.9 89.7 86.8 85.7 90.0 81.8 89.6 17.9
Cutie-small+ w/ MEGA 70.3 66.0 74.5 89.3 86.2 92.5 87.1 83.8 90.4 86.8 85.4 89.5 82.3 90.0 20.6
Cutie-base+ w/ MEGA 71.7 67.6 75.8 88.1 85.5 90.8 88.1 84.7 91.4 87.5 86.3 90.6 82.7 90.5 17.9

Table S2. Quantitative comparison on common video object segmentation benchmarks, including methods that use external training
data. Recent vision-transformer-based methods [9, 11, 13] depend largely on pretraining, either with MAE [10] or pretraining a separate
Mask2Former [15] network on COCO instance segmentation [14]. Note they do not release code at the time of writing, and thus they cannot
be reproduced on datasets that they do not report results on. Cutie performs competitively to those recent (slow) transformer-based methods,
especially with added training data. MEGA is the aggregated dataset consisting of DAVIS [7], YouTubeVOS [1], MOSE [8], OVIS [16], and
BURST [5]. ∗estimated FPS.

YouTubeVOS-2018 val LVOS val LVOS test

Method G Js Fs Ju Fu J&F J F J&F J F FPS

DEVA [18] 85.9 85.5 90.1 79.7 88.2 58.3 52.8 63.8 54.0 49.0 59.0 25.3
DEVA [18] w/ MOSE [8] 85.8 85.4 90.1 79.7 88.2 55.9 51.1 60.7 56.5 52.2 60.8 25.3
DDMemory [2] 84.1 83.5 88.4 78.1 86.5 60.7 55.0 66.3 55.0 49.9 60.2 18.7
Cutie-small 86.3 85.5 90.1 80.6 89.0 58.8 54.6 62.9 57.2 53.7 60.7 45.5
Cutie-base 86.1 85.8 90.5 80.0 88.0 60.1 55.9 64.2 56.2 51.8 60.5 36.4

Cutie-small w/ MOSE [8] 86.8 85.7 90.4 81.6 89.7 60.7 55.6 65.8 56.9 53.5 60.2 45.5
Cutie-base w/ MOSE [8] 86.6 85.7 90.6 80.8 89.1 63.5 59.1 67.9 63.6 59.1 68.0 36.4
Cutie-small w/ MEGA 86.9 85.5 90.1 81.7 90.2 62.9 58.3 67.4 66.4 61.9 70.9 45.5
Cutie-base w/ MEGA 87.0 86.4 91.1 81.4 89.2 66.0 61.3 70.6 66.7 62.4 71.0 36.4

Table S3. Quantitative comparison on YouTubeVOS-2018 [1] and LVOS [2]. DDMemory [2] is the baseline method presented in LVOS [2]
with no available official code at the time of writing. Note, we think LVOS is significantly different than other datasets because it contains a
lot more tiny objects. See Section F.3 for details. MEGA is the aggregated dataset consisting of DAVIS [7], YouTubeVOS [1], MOSE [8],
OVIS [16], and BURST [5].

scheme that includes training on BURST [5] and OVIS [16] in addition to DAVIS [7], YouTubeVOS [1], and MOSE [8]. We
train for an additional 50K iterations in the MEGA setting. The results are tabulated in the bottom portion of Table S2.

F.3. Results on YouTubeVOS-2018 and LVOS

Here, we provide additional results on the YouTubeVOS-2018 validation set and LVOS [2] validation/test sets in Table S3. FPS
is measured on YoutubeVOS-2018/2019 following the main paper. YouTubeVOS-2018 is the old version of YouTubeVOS-2019
– we present our main results using YouTubeVOS-2019 and provide results on YouTubeVOS-2018 for reference. Note that
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BURST val BURST test

Method All Com. Unc. All Com. Unc. Memory usage

DeAOT [3] FIFO w/ MOSE [8] 51.3 56.3 50.0 53.2 53.5 53.2 10.8G
DeAOT [3] INF w/ MOSE [8] 56.4 59.7 55.5 57.9 56.7 58.1 34.9G
XMem [4] FIFO w/ MOSE [8] 52.9 56.0 52.1 55.9 57.6 55.6 3.03G
XMem [4] LT w/ MOSE [8] 55.1 57.9 54.4 58.2 59.5 58.0 3.34G
Cutie-small FIFO w/ MOSE [8] 56.8 61.1 55.8 61.1 62.4 60.8 1.35G
Cutie-small LT w/ MOSE [8] 58.3 61.5 57.5 61.6 63.1 61.3 2.28G
Cutie-base LT w/ MOSE [8] 58.4 61.8 57.5 62.6 63.8 62.3 2.36G

Cutie-small LT w/ MEGA 61.6 65.3 60.6 64.4 63.7 64.6 2.28G
Cutie-base LT w/ MEGA 61.2 65.0 60.3 66.0 66.5 65.9 2.36G

Table S4. Extended comparisons of performance on long videos on the BURST dataset [5], including our results when trained in the
MEGA setting. Com. and Unc. stand for common and uncommon objects respectively. Mem.: maximum GPU memory usage. FIFO:
first-in-first-out memory bank; INF: unbounded memory; LT: long-term memory [4]. DeAOT [3] is not compatible with long-term memory.

these results are ready at the time of paper submission and are referred to in the main paper. The complete tables are listed
here due to space constraints in the main paper.

LVOS [2] is a recently proposed long-term video object segmentation benchmark, with 50 videos in its validation set
and test set respectively. Note, we have also presented results in another long-term video object segmentation benchmark,
BURST [5] in the main paper, which contains 988 videos in the validation set and 1419 videos in the test set. We test Cutie on
LVOS after completing the design of Cutie, adopt long-term memory [4], and perform no tuning. We note that our method
(Cutie-base) performs better than DDMemory, the baseline presented in LVOS [2], on the test set and has a comparable
performance on the validation set, while running about twice as fast. Upon manual inspection of the results, we observe that
one of the unique challenges in LVOS is the prevalence of tiny objects, which our algorithm has not been specifically designed
to handle. We quantify this observation by analyzing the first frame annotations of all the videos in the validation sets of
DAVIS [7], YouTubeVOS [1], MOSE [8], BURST [5], and LVOS [2], as shown in Figure S5. Tiny objects are significantly
more prevalent on LVOS [2] than on other datasets. We think this makes LVOS uniquely challenging for methods that are not
specifically designed to detect small objects.

F.4. Performance Variations

To assess performance variations with respect to different random seeds, we train Cutie-small with five different random seeds
(including both pretraining and main training with the MOSE dataset) and report mean±standard deviation on the MOSE [8]
validation set and the YouTubeVOS 2019 [1] validation set in Table S5. Note, the improvement brought by our model (i.e.,
8.7 J&F on MOSE and 0.9 G on YouTubeVOS over XMem [4]) corresponds to +24.2 s.d. and +8.2 s.d. respectively.

MOSE val YouTubeVOS-2019 val

J&F J F G Js Fs Ju Fu

67.3±0.36 63.1±0.36 71.6±0.35 86.2±0.11 85.1±0.20 89.6±0.27 81.1±0.19 89.3±0.13

Table S5. Performance variations (median±standard deviation) across five different random seeds.

G. Implementation Details
Here, we include more implementation details for completeness. Our training and testing code will be released for repro-
ducibility.

G.1. Extension to Multiple Objects

We extend Cutie to the multi-object setting following [4, 18–20]. Objects are processed independently (in parallel as a batch)
except for 1) the interaction at the first convolutional layer of the mask encoder, which extracts features corresponding to a
target object with a 5-channel input concatenated from the image (3-channel), the mask of the target object (1-channel), and
the sum of masks of all non-target objects (1-channel); 2) the interaction at the soft-aggregation layers [19] used to generate
segmentation logits – where the object probability distributions at every pixel are normalized to sum up to one. Note these are
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Figure S5. Cumulative frequency graph of annotated pixel areas (as percentages of the total image area) for different datasets. Tiny objects
are significantly more prevalent on LVOS [2] than on other datasets.

standard operations from prior works [4, 18–20]. Parts of the computation (i.e., feature extraction from the query image and
affinity computation) are shared between objects while the rest are not. We experimented with object interaction within the
object transformer in the early stage of this project but did not obtain positive results.

Figure S6 plots the FPS against the number of objects. Our method slows down with more objects but remains real-time
when handling a common number of objects in a scene (29.9 FPS with 5 objects). For instance, the BURST [5] dataset
averages 5.57 object tracks per video and DAVIS-2017 [7] averages just 2.03.

Additionally, we plot the memory usage with respect to the number of processed frames during inference in Figure S7.

G.2. Streaming Average Algorithm for the Object Memory

To recap, we store a compact set of N vectors which make up a high-level summary of the target object in the object memory
S ∈ RN×C . At a high level, we compute S by mask-pooling over all encoded object features with N different masks.
Concretely, given object features U ∈ RTHW×C and N pooling masks {Wq ∈ [0, 1]THW , 0 < q ≤ N}, where T is the
number of memory frames, the q-th object memory Sq ∈ RC is computed by

Sq =

∑THW
i=1 U(i)Wq(i)∑THW

i=1 Wq(i)
. (S1)

During inference, we use a classic streaming average algorithm such that this operation takes constant time and memory
with respect to the memory length. Concretely, for the q-th object memory at time step t, we keep track of a cumulative
memory σt

Sq
∈ RC and a cumulative weight σt

Wq
∈ R. We update the accumulators and find Sq via

σt
Sq

= σt−1
Sq

+

THW∑
i=1

U(i)Wq(i), σt
Wq

= σt−1
Wq

+

THW∑
i=1

Wq(i), and Sq =
σt
Sq

σt
Wq

, (S2)

where U and Wq can be discarded after every time step.

7



1 2 3 4 5 6 7 8
0

20

40

60

Number of objects

Fr
am

es
pe

rs
ec

on
d

(F
PS

)

Figure S6. Cutie-small’s processing speed with respect to the number of objects in the video. Common benchmarks (DAVIS [7],
YouTubeVOS [1], and MOSE [8]) average 2-3 objects per video with longer-term benchmarks like BURST [5] averaging 5.57 objects per
video – our model remains real-time (25+ FPS) in these scenarios. For evaluation, we use standard 854× 480 test videos with 100 frames
each.
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Figure S7. Running GPU memory usage (log-scale) comparisons with respect to the number of processed frames during inference. By
default, we use a first-in-first-out (FIFO) memory bank which leads to constant memory usage over time. Optionally, we include the
long-term memory from XMem [4] in our method for better performance on long videos. Our method (with long-term memory) uses less
memory than XMem because of a smaller channel size (256 in our model; 512 in XMem). DeAOT [3] has an unbounded memory size and is
impractical for processing long videos – our hardware (32GB V100, server-grade GPU) cannot process beyond 1,400 frames.

G.3. Training Details

As mentioned in the main paper, we train our network in two stages: static image pretraining and video-level main training
following prior works [4, 19, 21]. Backbone weights are initialized from ImageNet [22] pretraining, following prior work [4,
19, 21]. We implement our network with PyTorch [23] and use automatic mixed precision (AMP) for training.

G.3.1 Pretraining

Our pretraining pipeline follows the open-sourced code of [4, 12, 20], and is described here for completeness. For pretraining,
we use a set of image segmentation datasets: ECSSD [17], DUTS [24], FSS-1000 [25], HRSOD [26], and BIG [27]. We
mix these datasets and sample HRSOD [26] and BIG [27] five times more often than the others as they are more accurately
annotated. From a sampled image-segmentation pair, we generate synthetic sequences of length three by deforming the pair
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with random affine transformation, thin plate spline transformation [28], and cropping (with crop size 384× 384). With the
generated sequence, we use the first frame (with ground-truth segmentation) as the memory frame to segment the second
frame. Then, we encode the second frame with our predicted segmentation and concatenate it with the first-frame memory to
segment the third frame. Loss is computed on the second and third frames and back-propagated through time.

G.3.2 Main Training

For main training, we use two different settings. The “without MOSE” setting mixes the training sets of DAVIS-2017 [7]
and YouTubeVOS-2019 [1]. The “with MOSE” setting mixes the training sets of DAVIS-2017 [7], YouTubeVOS-2019 [1],
and MOSE [8]. In both settings, we sample DAVIS [7] two times more often as its annotation is more accurate. To sample a
training sequence, we first randomly select a “seed” frame from all the frames and randomly select seven other frames from the
same video. We re-sample if any two consecutive frames have a temporal frame distance above D. We employ a curriculum
learning schedule following [4] for D, which is set to [5, 10, 15, 5] correspondingly after [0%, 10%, 30%, 80%] of training
iterations.

For data augmentation, we apply random horizontal mirroring, random affine transformation, cut-and-paste [29] from
another video, and random resized crop (scale [0.36, 1.00], crop size 480× 480). We follow stable data augmentation [18] to
apply the same crop and rotation to all the frames in the same sequence. We additionally apply random color jittering and
random grayscaling to the sampled images following [4, 20].

To train on a sampled sequence, we follow the process of pretraining, except that we only use a maximum of three memory
frames to segment a query frame following [4]. When the number of past frames is smaller or equal to 3, we use all of them,
otherwise, we randomly sample three frames to be the memory frames. We compute the loss at all frames except the first one
and back-propagate through time.

G.3.3 Point Supervision

As mentioned in the main paper, we adopt point supervision [15] for training. As reported by [15], using point supervision for
computing the loss has insignificant effects on the final performance while using only one-third of the memory during training.
In Cutie, we note that using point supervision reduces the memory cost during loss computation but has an insignificant impact
on the overall memory usage. We use importance sampling with default parameters following [15], i.e., with an oversampling
ratio of 3, and sample 75% of all points from uncertain points and the rest from a uniform distribution. We use the uncertainty
function for semantic segmentation (by treating each object as an object class) from [30], which is the logit difference between
the top-2 predictions. Note that using point supervision also focuses the loss in uncertain regions but this is not unique to our
framework. Prior works XMem [4] and DeAOT [3] use bootstrapped cross-entropy to similarly focus on difficult-to-segment
pixels. Overall, we do not notice significant segmentation accuracy differences in using point supervision vs. the loss in
XMem [4].

G.4. Decoder Architecture

Our decoder design follows XMem [4] with a reduced number of channels. XMem [4] uses 256 channels while we use 128
channels. This reduction in the number of channels improves the running time. We do not observe a performance drop from
this reduction which we think is attributed to better input features (which are already refined by the object transformer).

The inputs to the decoder are the object readout feature RL at stride 16 and skip-connections from the query encoder at
strides 8 and 4. The skip-connection features are first projected to C dimensions with a 1× 1 convolution. We process the
object readout features with two upsampling blocks and incorporate the skip-connections for high-frequency information in
each block. In each block, we first bilinearly upsample the input feature by two times, then add the upsampled features with
the skip-connection features. This sum is processed by a residual block [31] with two 3× 3 convolutions as the output of the
upsample block. In the final layer, we use a 3× 3 convolution to predict single-channel logits for each object. The logits are
bilinearly upsampled to the original input resolution. In the multi-object scenario, we use soft-aggregation [19] to merge the
object logits.

G.5. Details on Pixel Memory

As discussed in the main paper, we derive our pixel memory design from XMem [4] without claiming contributions. Namely,
the attentional component is derived from the working memory, and the recurrent component is derived from the sensory
memory of XMem [4]. Long-term memory [4], which compresses the working memory during inference, can be adopted
without re-training for evaluation on long videos.
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G.5.1 Attentional Component

For the attentional component, we store memory keys k ∈ RTHW×Ck
and memory value v ∈ RTHW×C and later retrieve

features using a query key q ∈ RHW×Ck
. Here, T is the number of memory frames and H,W are image dimensions at stride

16. As we use the anisotropic L2 similarity function [4], we additionally store a memory shrinkage s ∈ [1,∞]THW term and
use a query selection term e ∈ [0, 1]HW×Ck

during retrieval.
The anisotropic L2 similarity function d(·, ·) is computed as

d(qi,kj) = −sj

Ck∑
c

eic(kic − qjc). (S3)

We compute memory keys k, memory shrinkage terms s, query keys q, and query selection terms e by projecting features
encoded from corresponding RGB images using the query encoder. Since these terms are only dependent on the image, they,
and thus the affinity matrix Apix can be shared between multiple objects with no additional costs. The memory value v is
computed by fusing features from the mask encoder (that takes both image and mask as input) and the query encoder. This
fusion is done by first projecting the input features to C dimensions with 1 × 1 convolutions, adding them together, and
processing the sum with two residual blocks, each with two 3× 3 convolutions.

G.5.2 Recurrent Component

The recurrent component stores a hidden state hHW×C which is updated by a Gated Recurrent Unit (GRU) [32] every
frame. This GRU takes multi-scale inputs (from stride 16, 8, and 4) from the decoder to update the hidden state h. We first
area-downsample the input features to stride 16, then project them to C dimensions before adding them together. This summed
input feature, together with the last hidden state, is fed into a GRU as defined in XMem [4] to generate a new hidden state.

Every time we insert a new memory frame, i.e., every r-th frame, we apply a deep update as in XMem [4]. Deep update
uses a separate GRU that takes the output of the mask encoder as its input feature. This incurs minimal overhead as the mask
encoder is invoked during memory frame insertion anyway. Deep updates refresh the hidden state and allow it to receive
updates from a deeper network.

H. Interactive Tool for Video Segmentation
Based on the video object segmentation capability of Cutie, we build an interactive video segmentation tool to facilitate
research and data annotation. We follow the decoupled paradigm of MiVOS [12] – users annotate one or more frames using an
interactive image segmentation tool such as RITM [33] and use Cutie for propagating these image segmentations through
the video. Users can also include multiple permanent memory frames (as in XMem++ [34]) to increase the segmentation
robustness. Figure S8 shows a screenshot of this tool.

This interactive tool is open-source to benefit researchers, data annotators, and video editors.
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Figure S8. Screenshot of our interactive video segmentation tool.
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