
A. Proofs

To facilitate the proofs of our results, we first present some established results from the prior works.

Lemma A.1. ([68, Theorem 1], [60, Theorem 1]) Suppose that ` : �⇥ {�1,+1} ! is a CPE loss and its partial losses
`�1, `+1 are differentiable. ` is proper if and only if for all b⌘ 2 (0, 1)

�`0+1(b⌘)
1� b⌘ =

`0�1(b⌘)
b⌘ = w(b⌘) (A.1)

for a weight function w : (0, 1) ! + such that
R 1�✏
✏ w(c)dc < 1 for all ✏ > 0.

Lemma A.2. ([4]) A proper loss ` is strictly proper if and only if its weight function w of (A.1) satisfies that w(c) > 0
almost everywhere on (0, 1).

Lemma A.3. ([68, Corollary 1]) Suppose that `�1, , `+1, are the partial losses of a composite CPE loss and differentiable.
The CPE loss is proper if and only if the link  satisfies

[ ]�1(v) =
`0�1, (v)

`0�1, (v)� `0+1, (v)
, 8v 2 . (A.2)

A.1. Proof of Theorem 1

Proof. The ASY loss of (8), (
`ASY
+1 (b⌘) = �(1� ⌘̂)�

+

log(⌘̂)

`ASY
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��
log(1� (b⌘ �m)+)

(A.3)

has derivatives

`0+1(b⌘) =
(1� b⌘)�+�1(�+b⌘ log(b⌘)� (1� b⌘))

b⌘ , (A.4)
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��1
+ ((b⌘ �m)+ � ��(1� (b⌘ �m)+) log(1� (b⌘ �m)+))
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. (A.5)

It follows that

�`0+1(b⌘)
1� b⌘ =

(1� b⌘)�+�1 ((1� b⌘)� �+b⌘ log(b⌘))
b⌘(1� b⌘) , (A.6)
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. (A.7)

When m 2 + and �+, �� 2 ++, the RHS of (A.6) and the RHS of (A.7) cannot be equivalent for all b⌘ 2 (0, 1) and,
from Lemma A.1, the ASY loss is not proper and thus not strictly proper.

A.2. Proof of Theorem 2

Proof. The function
f�(q) = �q� log(1� q), 8q 2 (0, 1) (A.8)

is convex on (0, 1) and has first-order derivative

f 0
�(q) =

q��1(q � �(1� q) log(1� q))

1� q
, (A.9)

which is positive and strictly increasing on q 2 (0, 1).



Consider the minimization of the conditional risk

min
b⌘2�

CASY(⌘, b⌘) = ⌘`+1(b⌘) + (1� ⌘)`�1(b⌘) (A.10)

for any ⌘ 2 (0, 1). This is a convex optimization problem with a bounded feasible set {b⌘|b⌘ 2 �}. Note that
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(A.11)

Because @CASY(⌘,b⌘)
@b⌘ is continuous on b⌘ 2 (0, 1), the minimum is attained at the critical point b⌘ = b⌘⇤ such that
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= 0, i.e.
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Using the definitions of h(z; �) in (15),

h(z; �) =
z� � �z��1(1� z) log(1� z)

1� z
, (A.13)

the above equation can be rewritten as

⌘h(1� b⌘⇤; �+)� (1� ⌘)h((b⌘⇤ �m)+; �
�) = 0. (A.14)

It follows that

⌘ =
h((b⌘⇤ �m)+; ��)

h((b⌘⇤ �m)+; ��) + h(1� b⌘⇤; �+)
= �(b⌘⇤; ��, �+,m), (A.15)

where we have used the definition of �(z; ��, �+,m) in (14), i.e.

�(z; ��, �+,m) =
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. (A.16)

When m = 0,
�(b⌘⇤; ��, �+, 0) =

1
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On b⌘⇤ 2 (0, 1), f 0
�+(1� b⌘⇤) is positive and strictly decreasing and f 0

��(b⌘⇤) is positive and strictly increasing, it follows that
�(b⌘⇤; ��, �+, 0) is strictly increasing. Furthermore, lim⌘!0+ �(⌘; ��, �+, 0) = 0 and lim⌘!1� �(⌘; ��, �+, 0) = 1, hence
�(b⌘⇤; ��, �+, 0) is a bijective mapping between (0, 1) and (0, 1).

When 0 < m < 1, we have �(b⌘⇤; ��, �+,m) = 0, 8b⌘⇤ 2 (0,m), and thus � is not a bijective map.

A.3. Proof of Theorem 3

Proof. The first-order derivatives of `0�1, (v) and `0+1, (v) are
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>>:
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(A.18)



from which
`0�1, (v)
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It follows, by Lemma A.3, that the CPE loss defined by (16) and (17) is proper. Using (A.1) and the chain rule, we have

w(b⌘) =
`0�1(b⌘)

b⌘ (A.20)

=
`0�1, ( (b⌘))
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Since [ ]�1(v) = 1

1+ k+⇣��(�k+(v�b+))

k�⇣+�(k�(v�b�))

is positive and strictly increasing on v 2 (�1,+1),  is strictly increasing and

 0(b⌘) > 0, 8b⌘ 2 (0, 1). Also, `0�1, (v) > 0, 8v 2 (�1,+1). It follows that w(b⌘) > 0, 8b⌘ 2 (0, 1), and the loss is strictly
proper by Lemma A.2.

B. Experiments

B.1. Calibration Metrics

To quantify the calibration error of a CPE DNN, we discretize the interval [0, 1] into M bins {Im = [m�1
M , m

M )}Mm=1. Let oi
be the fraction of positive examples in bin Ii, ei be the mean of estimated posterior probability b⌘ for examples in bin Ii, and
N =

PM
i |Ii| be the total number of examples in the test set. Calibration is usually evaluated with three metrics, Expected

Calibration Error (ECE), Average Calibration Error (ACE) and Maximum Calibration Error (MCE), defined as follows

ECE =
MX

m=1

|Im|
N

|om � em|. (B.1)

ACE =
MX

m=1

1

M
|om � em|. (B.2)

MCE = max
m2{1,··· ,M}

|om � em|. (B.3)

As pointed out by prior works [45, 51], ECE is unsuited for problems with extreme class imbalance, since it usually assigns
disproportionately high weight to the first few bins and fails to capture the calibration error of the remaining. Hence, we
adopt ACE and MCE as calibration metrics for the highly imbalanced multi-label learning problems considered in this work.

B.2. VQA

Table B.1 presents a comparison of the strictly proper losses on the VQA task, confirming the observations above. While the
two losses have equivalent accuracy, SPA achieves better calibration than BCE, which is widely used for this task. While the
gains are not as large as in Table 3, probably because labels are less imbalanced, they are still significant, e.g. a reduction of
ACE from 6.4 to 4.2.

Accuracy" ACE# MCE#

BCE 73.27 6.4 11.4
SPA 73.50 4.2 9.3

Table B.1. Evaluation on VQA v2.0.

B.3. Ablation on Hyperparameters for SPA

Since the hyperparamters k�, b�, ⇣� of SPA affect the treatment of negative examples, we conduct an ablation study on
the effects of k�, b�, ⇣� in Table B.2. Compared to the results in the main paper, it is shown that with different choices
of hyperparameters, SPA always achieves better accuracy than the symmetric BCE losses and less calibration error than the
asymmetric focal and ASY losses that are not strictly proper.



(k�, b�, ⇣�) mAP@y mAP@x ACE MCE

(2,-1,2) 77.1 88.1 5.3 8.0
(2,+1,2) 77.5 88.5 6.6 10.8
(3,-1,2) 76.7 87.8 8.6 12.5
(3,+1,2) 77.1 88.1 5.2 9.5
(4,-1,2) 75.8 87.1 10.2 17.7
(4,+1,2) 76.9 88.0 7.6 13.3

(2,-1,3) 77.5 88.4 5.6 8.2
(2,+1,3) 77.5 88.5 5.7 10.8
(3,-1,3) 77.0 88.1 5.8 10.8
(3,+1,3) 77.2 88.3 6.7 11.6
(4,-1,3) 76.4 87.3 5.3 8.6
(4,+1,3) 76.8 88.0 6.6 13.3

(2,-1,4) 77.6 88.5 3.4 5.8
(2,+1,4) 77.6 88.6 4.6 7.8
(3,-1,4) 77.3 88.0 5.4 8.3
(3,+1,4) 77.3 88.4 5.1 7.7
(4,-1,4) 76.7 87.6 8.9 16.6
(4,+1,4) 76.9 88.0 4.3 7.2

(2,-1,5) 77.6 88.4 5.3 9.8
(2,+1,5) 77.6 88.7 4.6 7.6
(3,-1,5) 77.3 88.3 6.5 11.3
(3,+1,5) 77.8 88.4 5.3 12.0
(4,-1,5) 76.9 87.8 8.2 13.7
(4,+1,5) 77.1 88.2 4.8 8.9

(2,-1,6) 77.6 88.5 5.8 8.8
(2,+1,6) 77.6 88.6 6.0 9.6
(3,-1,6) 77.4 88.1 6.7 11.8
(3,+1,6) 77.5 88.5 6.3 10.6
(4,-1,6) 77.1 88.0 7.8 13.7
(4,+1,6) 77.3 88.3 5.8 11.5

Table B.2. Ablation of SPA hyperparameters k�, b�, ⇣�. The hyperparameters of positive examples are fixed as k+ = 1, b+ = 0, ⇣+ = 1. All
evaluations are made on MS-COCO and ECA-ResNet50-T.


