
What Do You See in Vehicle? Comprehensive Vision Solution
for In-Vehicle Gaze Estimation

Supplementary Material

Due to the page limitation, we present some details in

the supplementary material. We first describe the details of

method and then demonstrate more experiment results.

1. Methodology
1.1. Gaze Target Calibration

We uses a transparent chessboard for gaze target calibration.

The mathematical deduction is shown in this section.

We set a transparent chessboard between the DMS cam-

era and the depth camera. The two cameras both capture

one side of the chessboard. Therefore, we can compute the

pose matrices of the two cameras w.r.t. the chessboard co-

ordinate system. We denote the pose matrices of the two

cameras as {Rdms, tdms} and {Rdepth, tdepth}. Given a

point p1 in the chessboard coordinate system, we have

pdms = Rdmsp1 + tdms. (1)

Similarly, we can compute the 3D position pdepth in the

depth camera coordinate system with a given point p2.

pdepth = Rdepthp2 + tdepth. (2)

Note that, p1 and p2 represent points in two different

chessboard coordinate systems since the two cameras re-

spectively capture each side of the chessboard. We fur-

ther derive the rotation matrix and the translation matrix

between the two chessboard coordinate systems. We use

{Rchess, tchess} to represent them and have

p1 = Rchessp2 + tchess (3)

We have Rchess = diag (0, 0,−1) and tchess = (0, 0,−d),
where d is the thickness of the chessboard. Note that, some

cameras will capture images in a mirror mode. The rotation

matrix should be adjusted based on real setting.

Therefore, given a point pdepth in the depth camera coor-

dinate system, we can obtain the pdms using Eq. (1), Eq. (2)

and Eq. (3). We use Rrot and trot to represent the rotation

and translation matrices between the depth and DMS cam-

eras. It is easy to derive that

Rrot = RdmsRchessR
−1
depth, (4)

and

trot = −RdmsRchessR
−1
depthtdepth +Rdmstchess + tdms.

(5)

We can use following equation for the conversion.

pdms = Rrotpdepth + tdms. (6)

1.2. Implementation details of GazeDPTR

In this paper, we propose a GazeDPTR for gaze estimation.

We also extend the GazeDPTR for gaze zone classification.

We train the extended network in an end-to-end manner.

In detail, GazeDPTR contains two GazePTRs for feature

extraction from original and normalized images. GazePTR

is modified based on GazeTR [1]. We use ResNet18 to ex-

tract multi-level feature maps and obtain 4 different scale

feature maps. Their scales are 64× 56× 56, 128× 28× 28,

256×14×14, 512×7×7. We use 1×1 convolution layers

and global average pooling layers to convert them into 128D

features. We denote these features as {fi ∈ R
128}i=1,2,3,4.

We use sup n and o to represent the feature is extracted

from normalized or original images, e.g. fo
1 . Next, we use

a 6-layer transformer to integrate these features for the final

feature. We use one learnable token to aggregate {fn
i } for

fn
final. Two learnable tokens are used to aggregate {fo

i }
since we need feature fo

final for gaze estimation and visual

feature fvisual for gaze zone classification. We use another

6-layer transformer to integrate fn
final and fo

final for fgaze.

We add a MLP to estimate gaze directions from fgaze.

We project the estimated gaze into a tri-plane. Note that,

we cut off the propagation of gradient in this operation layer

since it drops gaze estimation accuracy but cannot improve

gaze classification performance. We use a 2-layer trans-

former to extract positional feature fpos where a deep trans-

former will vanish gradients. We also use a 6-layer trans-

former to integrate positional features and visual features

for fzone. We add a MLP to predict gaze zone from fzone.

Regarding the loss function, we use L1 loss Lgaze for

the gaze estimation task. Our method contains two ground

truths go and gn. We define the function Lo
gaze(f) that

means we set a MLP to estimate gaze from feature f and

measure the L1 distance between the gaze and go for loss

function. The same for Ln
gaze(f).

we require following feature should be gaze-related in-

cluding 1) multi-level feature {fn
i } 2) intermediate features

fn
final and fo

final 3) gaze feature fgaze. The loss function

can be represented as:

L1 =

4∑

i=1

∑

j∈{o,n}
Lj
gaze(f

j
i )+

∑

j∈{o,n}
Lj
gaze(f

j
final)+Ln

gaze(fgaze)

(7)

We set cross entropy loss as the loss function for gaze

zone classification. We also define the loss Lzone(f) that

means we set a MLP to predict gaze zone from f and mea-



Table 1. We define nine zones for gaze zone classification and show the average precision (%) on each zone.

Visual
Feature

Positional
Feature

Left-side
mirror

Rear-view
mirror

Right-side

mirror
Central-control

screen
Steering

wheel
Handbrake Dashboard

Left-side
windshield

Right-side

windshield
Avg

� 96.5 47.0 68.4 83.4 92.5 79.9 72.5 89.3 69.9 79.4

� 97.3 39.1 79.5 63.7 87.6 54.4 45.2 88.9 65.6 75.3

� � 96.9 42.1 75.7 77.1 92.0 86.9 77.5 89.7 75.4 81.8

Table 2. We define one additional class None to account for sam-

ples that do not fall within the nine zones. We respectively report

the average precision with and w/o the None region.

Visual
Feature

Positional
Feature

AP
w/o None region

AP
with None region

� 79.4% 78.1%

� 75.3% 75.8%

� � 81.8% 80.0%

Table 3. We selected best results from a pair of original and nor-

malized images. The performance shows the selected result sig-

nificantly outperform each of images.

Original

images
Normalized

images Selected

Acc 7.44◦ 7.04◦ 5.72◦

sure the cross entropy loss. The loss function for gaze zone

task is

L2 = Lzone(fpos) + Lzone(fvisual) + Lzone(fzone) (8)

We optimize the whole network using

LGazeDPTR = L1 + L2 (9)

2. Additional Experiments
2.1. Setup of Gaze Zone Classification

Our paper extends gaze estimation for gaze zone classifica-

tion. In this section, we provide details about the experi-

mental setup.

During data collection, stickers are placed strategically

within the vehicle. Based on the positions of these stickers,

we divide the in-vehicle region into nine zones: left-side

mirror, right-side mirror, rear-view mirror, steering wheel,

left-side windshield, right-side windshield, central-control

screen, handbrake, and dashboard. It is important to note

that the dashboard encompasses not only the instrument

cluster behind the steering wheel but also the air condition-

ing panel. Additionally, we introduce an extra region None
to account for points that do not fall within the specified

nine zones. The performance of this additional class is not

included in the average performance calculation.

The average precision (AP) of each classes is shown in

the Fig. 1. GazeDPTR integrates two features and show

better average AP. We also show the average performance

with None region in Tab. 2 for reference.
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Figure 1. We count the improvement ratio in each head range. A

larger ratio means more samples have performance improvement

due to normalization. The result demonstrates that the large head

range usually has relatively low improvement ratio.
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Figure 2. We count the average angular error in different head

ranges. GazePTR estimates gaze from normalized images while

GazeDPTR uses both normalized and original images for gaze es-

timation. It is interesting that GazeDPTR has larger performance

improvement in a large head range than GazePTR. Combining

with the result in Fig. 1, the reason may be the relatively low im-

provement ratio in the large head range.

2.2. Analysis on Normalized and Original Images

Our work uses both original and normalized images for gaze

estimation. Our hypothesis is that the conbination of two

images can provide additional insights beyond what each

offers. In this section, we show experimental result to val-

idate our hypothesis. We initially conducted an oracle

baseline by separately training GazePTR on both the orig-

inal and normalized datasets and selecting the best result

from each image pair. The result is shown in Tab. 3. The

selected performance demonstrated a remarkable improve-

ment, achieving 5.72◦, which significantly surpasses the

performances in both the original and normalized images.

To gain a more nuanced understanding of the improve-

ment across different head pose ranges, we calculated the



Zhang et.al

Ours

Origin

Figure 3. We show the normalization image obtained from

Zhanget al. [2] and ours. We also visual the original images which

are directly cropped from scene images. Zhang et al. rotate images

based on the x-axis of head. It sometimes produce unstable result

in extreme head pose, e.g., the second column. We modify their

method and cancel such rotation. Our method has better perfor-

mance which is shown in our manuscript.

improvement ratio. A particular sample is considered im-

proved if the performance of the normalized image sur-

passes that of the original image. The results are visualized

in Fig. 1, where images that failed in the large head pose

range typically exhibit a relatively low improvement ratio.

Additionally, the angular error across different head poses is

depicted in Fig. 2, underscoring the larger performance im-

provement in a significant head pose range for GazeDPTR.

These findings provide valuable insights into the advantages

of our proposed method.

2.3. Visualization of Normalization Images

We show the images of different normalization methods and

original images in Fig. 3. Zhang et al. [2] rotate images

based on the x-axis of head. It sometimes produce unsta-

ble result in extreme head pose, e.g., the second column in

Fig. 3. We modify their method and cancel such rotation.

Our method has better performance which is shown in our

manuscript.
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