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APPENDIX

This supplementary material summarizes the video con-
tent in Appendix A and provides additional technical details
of the speech disentangled model and the gesture genera-
tion model in Appendix B and Appendix C, respectively.
We provide details about motion extractor model in Ap-
pendix D, discussions on the gesture emotion and seman-
tics in Appendix E, details on the data preparation process
in Appendix F, a review of state of the art methods in Ap-
pendix G, and additional information about the perceptual
study in Appendix H.

A. Supplementary Video
The supplementary video shows the generated gestures.
Specifically, it provides:
1. Gesture generations on various emotional audios,
2. Gesture emotion and style editing results,
3. Comparisons with state of the art mesh-based and

skeleton-based gesture generation methods,
4. Ablation comparisons of the different components of our

approach,
5. Gestures showing the diversity in the generations, and
6. Gestures generated from an in-the-wild audio sequence.

B. Speech Disentanglement Model
We explain the overall architecture in Appendix B.1 and
the encoder–transformer architecture in Appendix B.2. We
demonstrate the reconstruction mechanism to enforce dis-
entanglement in Appendix B.3. Finally, we explain the
training procedure and loss terms in Appendix B.4.

B.1. Architecture

We illustrate speech disentanglement model architecture
in Fig. A.1. The training is conducted over audio of the
same utterances spoken under different emotions or spo-
ken by different speakers. Our model consists of three
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Figure A.1. Speech disentanglement model. An input filterbank
is given to the three encoders, producing three disentangled la-
tents, which are decoded into a reconstructed filterbank. We here
show disentanglement reconstruction for one audio only, please
refer Appendix B.3 for its detailed explanation.

transformer encoders, a transformer fusion, and a trans-
former decoder. The input filterbank is simultaneously
passed through content Ec, style Es, and emotion Ee trans-
former encoders, producing three disentangled latents: con-
tent c, style s, and emotion e. The fusion and decoder are
transformer-based layers. The transformer–fusion creates
a single embedding by applying cross attention on the in-
put triplet embeddings (c, e, s). Finally, the transformer–
decoder reconstructs the original filter bank from the com-
pressed single latent embedding produced by the trans-
former fusion.

B.2. Encoder Transformers

Similar to [6–10, 16] we employ transfer learning of vi-
sion task to our audio task by using pretrained weights of
DeiT [20] (88M params) transformer that is fine-tuned on
384x384 images from ImageNet-1k [19]. We use a pre-
trained DeiT encoder as a component of each of the en-
coders, as illustrated in Fig. A.3. We linearly embed patches
to features embedding of size 768 and feed them into DeiT
along with trainable positional embedding of same size
(768). We append class token [CLS] and distillation token
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Figure A.2. Reconstruction concatenations for training for-
ward pass. We obtain disentangled content, emotion, and style
latents from the transformer encoders. (Self ) concatenation of
triplet latent vectors is used to decode back into the original filter-
bank. To enforce the content disentanglement, we swap content la-
tent vectors (cross-content) between given different-subjects audio
pair with same utterances. Whereas to enforce style and emotion
disentanglement, we swap style (cross-style) and emotion (cross-
emotion) latent vectors between given same-subject audio pairs
with same emotion categorical label. We repeat the procedure for
quadruples of audio {a∗, a⋆, a◦, a•} input in each forward pass.

[DIST] obtained from DeiT at the beginning of each filter
bank sequence. We then average the 3-channel inputs of
DeiT to obtain a single filterbank channel input. Finally, we
use the output of the last DeiT encoder layer and project
to 1D latent vector of 256 dimensions each, as our con-
tent, emotion, and style latents. We average the [CLS] and
[DIST] tokens from DeiT and use it for audio emotion as
well as audio style classification tasks for 8 and 30 category
labels respectively.

B.3. Reconstruction Concatenations

Fig. A.2 demonstrates a detailed information of the cross-
reconstruction mechanism to enforce the audio content,
emotion, and style disentanglement. Each audio in the
quadruple is encoded and decoded to produce the recon-
structed audio filterbank. To enforce content disentangle-
ment, we swap the content latent vectors between different-
subject same-emotion audio pairs with same utterances.
Similarly, we swap emotion and style latents using audio
pairs from the same subject. Specifically, we swap emotion
latent vector and style latent vector between same-subject
same-emotion audio pairs with different utterances. The
procedure is repeated for each audio in the audio quadru-
ples.

B.4. Training and Losses

We train the speech disentanglement model on 10s-audio
segments of the BEAT dataset, which provides the GT
labels for emotion and subject categorical labels. We
split the audio data across actors during train, validation,
and test step. During training, one sample is formed by
a quadruple of different audios (a1 = ac1,e1,s1 , a2 =
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Figure A.3. Speech encoder transformer. We have used encoder
architecture based on Touvron et al. [20]. We use this architecture
as content, emotion, and style encoders in the speech disentangle-
ment model. Following Gong et al. [6, 8], we use 10s augmented
speech filterbank and split into fixed 1209 patches of 16 x 16 each,
having 6 units overlap in frequency and time domain. The filter-
bank is passed through a linear projection layer and a learnable
positional embedding (PE) is added to it.

ac2,e1,s1 , a3 = ac1,e1,s2 , a4 = ac2,e1,s2), with two differ-
ent contents c1, c2 (i.e., two different scripts), two different
styles s1, s2 (spoken by two different subjects) and the same
emotion e1. To ensure, content, style, and emotion disen-
tanglement, we employ a multitude of training losses. The
self-reconstruction loss Lself ensures that the style, emo-
tion, and content latents extracted from the same audio can
be decoded into the original inputs:

Lself =

4∑
k=1

∥D(Ec(ak), Es(ak), Ee(ak))− ak∥1

The content loss Lcon ensures that two content latents
extracted from two different audios with the same content
ck but two different styles si, sj match:

Lcon =

2∑
k=1

∥Ec(ak)− Ec(ak+2)∥1

We also employ the emotion classification loss Lemo to
ensure that the encoded emotion latents carry the emotion
information. This is ensured by projecting them with a
linear projection head into a classification vector and then
computing emotion classification cross entropy loss. We
use the same procedure to employ the style classification
loss Lsty:

Lemo = −
∑

1≤le≤ne

yle log(ple),

Lsty = −
∑

1≤ls≤ns

yls log(pls),

with ne = 8 and ns = 30 denoting the number of emo-
tion classes and training subjects respectively.



Finally, we employ the cross-reconstruction losses for
emotion, style, and content. This loss ensures that we
can combine any three style, content, and emotion latents
and decode them into a valid reconstruction. As shown
in Fig. A.1 and Fig. A.2, this is a three part cross reconstruc-
tion process. In this process, we extract content Ec(a∗),
emotion Ee(a∗), and style Es(a∗) latents of all four differ-
ent audios. Given two input audios of the different contents
ci and cj , with the same speaker, and the same emotion,
we swap the emotion latents between the audio pair, and
decode the two audios back. Since the emotion class is con-
stant within a quadruple, the emotion cross-reconstruction
should be equal to the original audio. Similarly, we cross-
reconstruct an input audio with two style latents of the same
person, but of different sequence. Enforced by:

Lxemo =
4∑

k=1

D(Ec(ak), Es(ak), Ee(aj(k)))− ak,

Lxsty =

4∑
k=1

D(Ec(ak), Es(aj(k))), Ee(ak))− ak,

where j(k) = [(6− k) mod 4] + 1.
Given two input audios of the same contents, different

speakers si and sj , and same emotion, we swap the content
latents between the audio pair, and decode the two audios
back. Since the utterances being spoken are the same and
we keep the original style and emotion constant, the cross
reconstruction for the swapped content should be equal to
original audio. This is enforced by:

Lxcon =

4∑
k=1

D(Ec(aj(k))), Es(ak), Ee(ak))− ak

where j(k) = [(1 + k) mod 4] + 1.
The combined audio loss is given as:

Ldis = Lxcon + Lxemo + Lxsty

+ Lself + Lemo + Lcon + Lsty

Once trained, the speech disentanglement model pro-
duces three disentangled latents for content, style and emo-
tion. These latents serve as the input to our diffusion model.

B.5. Implementation Details

The encoder transformer DeiT (88M parameters) that is
finetuned on 384x384 images from ImageNet-1k is ob-
tained from PyTorch image models (timm) [21]. The con-
tent, emotion, and style latent vectors are of 256 dimension.
The transformer–fusion includes 2 layers and 4 heads. The

transformer–decoder includes 4 heads and 4 layers. The in-
put dimension of fusion block is 768 to accommodate three
content, emotion, and style latent codes. Each 2D filterbank
is of 1024 x 128, where 128 represents the number of mel-
frequency bins.

B.6. Ablation Experiments

We conduct two ablation studies with the speech disentan-
glement model. One to only disentangle emotion from con-
tent (dropping Lsty , Lxsty). The other to only disentangle
only style from content (dropping Lemo, Lxemo). Tab. A.1
shows the accuracy and F1 scores for emotion and style la-
tent vectors. The Emotion Accuracy (EA), Style Accuracy
(SA), Emotion F1 Score (EF1), and Style F1 Score (SF1)
in our speech disentanglement model exhibit only marginal
differences compared to the results obtained in the abla-
tion experiments. We report the test set self- and cross-
reconstruction errors in Tab. A.2. The cross-reconstruction
errors are comparable to self-reconstruction errors which in-
dicates that the individual latents from different audios can
be combined to produce valid outputs. This holds for the
main model and also the ablated models. However, the ab-
lated models are not able to factor the audio into all three
components due to the dropped loss terms. We observe the
robust performance of our audio model, by accounting for
the complex interplay between emotion and style. By con-
currently disentangling three latent vectors, our approach
effectively captures the intricate relationships in the audio

Table A.1. Audio emotion and style disentanglement ablation.
We show scores for Emotion Accuracy (EA), Style Accuracy (SA),
Emotion F1 Score (EF1), and Style F1 Score (SF1) in our speech
disentanglement model and ablation experiments. Although there
are slight differences, our model effectively captures the complex
relationships between emotion and style by disentangling three la-
tent vectors simultaneously. The best scores are highlighted in
green and second best in blue .

Method EA (%) ↑ EF1↑ SA (%) ↑ SF1↑
Ours 91.531 0.914 96.060 0.960
Emo-disentangle 91.966 0.918 — —
Sty-disentangle — — 96.095 0.961

Table A.2. Audio latent component factorization ablation. Self
and cross-reconstruction errors show comparable performance,
suggesting that individual latents from different audio sources can
be effectively combined to yield valid outputs. The best scores are
highlighted in green and second best in blue .

Method Self↓ XCon↓ XEmo↓ XSty↓
Ours .3739 .3740 .3816 .3815
Emo-disentangle .3793 .3792 .3905 —
Sty-disentangle .3769 .3770 — .3887
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Figure A.4. Inference. We sample zn and employ the three conditioning latents from a test-time audio c, e, s. We iteratively apply ∆ to
generate the fully denoised zm̃ which is decoded by PD into the final motion m̃1:T .

Figure A.5. Conditional latent diffusion. In the diffusion pro-
cess (right to left) we obtain a noisy motion latent, whereas in the
denoising process (left to right) we obtain a conditioned denoised
motion latent.

data, allowing to jointly model and distinguish both emo-
tion and style factors.

C. Gesture Generation Model
C.1. Motion Prior And Latent Denoiser

In this section we include detailed illustrations of the mo-
tion prior and latent denoiser. Fig. A.4 illustrates the infer-
ence process employed by our model. Fig. A.5 illustrates
the forward diffusion and the reverse audio-conditioned de-
noising process, operating at the latent space. Finally, A.7
shows the diagram of the architecture of the motion prior.

C.2. Methods Trained on Coarse Skeletal Data

We compare AMUSE with methods trained on coarse skele-
tal data. We choose DSG [22], CaMN [13], Zhu et al. [23]
and MoGlow [1] as recent gesture generation models using
audio input. AMUSE produces more synchronized gestures
and better represents the underlying audio emotion com-
pared to the state of the art methods trained on skeletal data,
as shown in our supplementary video. Additionally, these
methods are not trained to output 3D meshes. We observe
uncanny poses and self-penetrations as shown in Fig. A.8.
In our video, we provide additional comparison with these
skeleton based methods in both formats, the original predic-
tions of those models and 3D meshes which are created via

Figure A.6. Ablation conditional latent diffusion. In the de-
noising process (left to right) of the ablation model, we obtain a
denoised motion latent that is conditioned on a compressed non-
disentangled latent vector m instead of three disentangled latents
that are used in the final model.

Inverse Kinematics (IK). We exclude the conversion to 3D
mesh for Zhu et al. [23] because the output skeleton format
is incompatible with SMPL-X topology.

C.3. Ablation Experiments

Without speech disentanglement model. This subsection
illustrates the difference between the final AMUSE model
and the ablation of AMUSE w/o audio disentanglement.
AMUSE w/o audio disentanglement uses 8 linear-layered
auto-encoder that operates directly on raw audio MFCC fea-
tures to produce single latent vector m. Since AMUSE w/o
audio disentanglement does not operate over the three dis-
entangled latents of content, emotion, and style but instead
only one non-disentangled latent m, the latent diffusion pro-
cess also only takes one latent on the input m as shown in
Fig. A.6. By design, this model lacks the gesture editing
capabilities.
Without motion prior. We employ our latent denoiser only
in this ablation model. We completely removed the motion
prior component and replace it with a linear projection head.
The ablation model without motion prior is not able to con-
verge and produces mostly static motions (refer to the sup-
plementary video). This signifies the importance of having
a motion prior component in our AMUSE architecture.
Quantitative evaluation of ablation experiments. Fol-
lowing the procedure described in the Sec. 5.1 , we re-
port quantitative evaluation scores in Tab. A.3, comparing
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Figure A.7. Motion prior network. The motion prior is VAE
encoder decoder architecture inspired from Chen et al. [4]. Both
encoder and decoder follow a U-Net like structure with skip con-
nections between transformer blocks. The learnable positional em-
beddings (PE) are injected into each multi-head attention layer.

AMUSE with the ablation models and GT. The version w/o
speech disentanglement model produces lower-quality ges-
tures and lacks editing capabilities compared to the com-
plete model. This is because it lacks a component for sep-
arating emotion, content and style in the audio. The scores
for the ablation models without motion prior are the low-
est, indicating that this model did not converge success-
fully. Additionally, in Tab. A.4 we report improved FGD
and Div scores when the motion prior and diffusion model
are trained jointly compared to when trained separately,
indicating that joint training yields superior results. Fur-
thermore, we conduct additional ablation experiments with
and without alignment losses (Lalign, LV align). Includ-
ing alignment losses results in a GA of 46.79%, whereas
without them, the GA drops to 30.89%, demonstrating the
alignment losses effectiveness. Moreover, we compute the

Table A.3. Ablation of AMUSE components. The model with-
out audio disentanglement produces lower-quality gestures and
lacks editing capabilities. The model without motion prior per-
form poorly due to convergence issues. Among the methods being
compared, we highlight the best scores in green and second best

in blue .

Method SRGR↑ BA↑ FGD↓ Div→ GAa↑
GT — 0.83 — 27.83 64.04

Ours 0.36 0.81 388.63 25.06 46.76
Ours-No-Prior 0.25 0.20 987.90 13.41 15.42
Ours-No-Audio-Model 0.31 0.78 633.27 21.08 26.88

a GA is average of all 8 emotions.

Table A.4. Ablation of AMUSE training. We observe improved
FGD and Div scores when the motion prior and diffusion model
are jointly trained, highlighting superior performance compared to
separate training methods. We highlight the best scores in green

and second best in blue .

Method FGD↓ Div→
Ours 388.63 25.06
Ours-Disjoint 362.33 24.49

CaMNDSG MoGlow

Figure A.8. Coarse skeleton-based methods. Here we compare
DSG [22], CaMN [13], and MoGlow [1]. Unlike SMPL-X-based
models, these are trained using different skeletal hierarchies with-
out volumetric 3D shapes. Retargeting them onto the SMPL-X
skeleton with IK causes uncanny poses and self-penetration.

average jerk of the left and right hands for motion sequences
belonging to the same audio of [22], ours, and GT, reporting
it in m/s3 as 1.18, 1.10, and 0.065, respectively. This signi-
fies that the GT motion is the most steady, whereas ours is
slightly smoother over time compared to [22].

D. Motion Feature Extractor Model
We employ the motion extractor model M for computing
all quantitative evaluation metrics. Our motion extractor
encoder model design is inspired by Petrovich et al. [18],
in an autoencoder setting (i.e., without a probabilistic vari-
ational component). We append a CLS token at the begin-
ning of the motion sequence and supervise with a cross-
entropy emotion classification objective LMemo applied to
the output CLS token. We train the motion extractor model
on the BEAT training data. Once trained, we use the latent
space features to compute evaluation metrics as described
in the Sec. 5.1.

LMemo = −
∑

1≤le≤ne

yle log(ple)

with ne = 8 denotes the number of emotion classes.

E. Gesture Emotions And Semantics
We quantitatively evaluate our method using metrics SRGR,
beat align, FGD, diversity, and gesture emotion accuracy.
Leveraging the latent space features from the motion extrac-
tor model M , we compute SRGR and gesture emotion accu-
racy. Additionally, we directly utilize the generated motion
sequence to calculate the beat align score.
Semantic-Relevant Gesture Recall (SRGR). In the SRGR
metric score, similar to Liu et al. [13], we use ground truth
semantic score as weight for the Probability of Correct Key-
point (PCK) between the generated gestures and ground
truth gestures, where PCK is the number of joints success-
fully recalled for a given threshold δ. Following the ap-
proach suggested by BEAT authors:



Figure A.9. Emotional gesture variation. Semantic scores for various emotions within the same subject shows how the subject expresses
gestures differently for each emotion. This reflects the subject’s interpersonal style specific to each emotion.

Figure A.10. Emotional gesture individuality. Semantic scores across various subjects for the same emotion reveal how different subjects
express gestures uniquely for identical utterances within same emotion. There is variability in expressiveness, with some subjects being
more expressive (eg. Jamie, Hailing) than the others (eg. Sophie, Kexin).

SRGR = λ
∑ 1

T x J

T∑
t=1

J∑
j=1

1
[∥∥∥pjt − p̂jt

∥∥∥
2
< δ

]
where 1 is the indicator function, T , J are the set of frames
and number of joints, we use SRGR to measure how well
our model recalls gestures in the relevant clip. This met-
ric reflects human perception of valid gesture diversity. The
metric is computed based on the scores assigned by 118 an-
notators from Amazon Mechanical Turk (AMT), who eval-
uated the semantic relevance on a continuous scale of 0-1.
The scores are provided for four gesture types: beat (rhyth-
mic movements), iconic (representative movements), deictic
(indicative or pointing movements), and metaphoric (sym-
bolic or figurative movements). SRGR metric needs GT se-
mantic scores for computation.
Ground-truth semantic scores. We obtain the ground-
truth semantic score, provided by the BEAT authors, for
computing the SRGR. In Fig. A.9, we present semantic
scores for the same subject across various emotions, while
Fig. A.10 illustrates semantic scores for all subjects ex-
pressing the same emotion. This allows us to observe how
subjects gesture differently with different emotions and how
different subjects gesture for the same emotion. While
we acknowledge the high-quality dataset introduced by the
BEAT authors, our model has the potential to deliver even
better results and improved expressivity with an enhanced
dataset quality.
Beat alignment. Following Li et al. [12], we compute the

beat align score. To compute the beat alignment score, we
use six joints: left wrist, left elbow, left shoulder, right wrist,
right elbow, and right shoulder, similar to Liu et al. [13].
We measure the synchronization between the generated 3D
motion and the input speech by calculating the beat align
score. This score gauges the average distance between each
kinematic beat and its nearest speech audio beat, following
a unidirectional approach – recognizing that gesture mo-
tion may not align with every speech audio beat. AMUSE
achieves the highest beat align score in correlating speech
audio and gestures compared to the other methods.
Gesture emotion accuracy. Gestural emotions are com-
plex, influenced by internal states of subject, social sig-
nals, and their perception vary significantly across individu-
als with diverse cultural backgrounds. AMUSE is designed
to capture perceived gestural emotions. While we demon-
strate AMUSE with a gesture emotion recognition accuracy
of 46.76% and AMUSE-Edit with 34.18%, outperforming
other state of the art methods, it is important to note that rec-
ognizing emotion from gestures remains a challenging task
in computer vision. We observe the gesture emotion accu-
racy for the GT sequence is 64.04%. There is still ample
room for improvement in addressing this complex problem.
Additionally, in Fig. A.11, we present the confusion ma-
trix for ground truth (GT) emotion predictions on the left
and reconstructions (gestures generated using the original
style, emotion, and content latents of a given audio) on the
right. We observe a robust correlation between the predic-
tions on GT and the reconstructions for all eight emotions.
Additionally, we conducted experiments on gesture edits by



Figure A.11. Confusion matrix comparing gestures from the
ground truth (GT) and regenerated emotion predictions.

swapping emotion latents from one audio with those from
another audio of the same subject but with a different utter-
ance. In Fig. A.12, we showcase two exemplars, transform-
ing from Happy to rest and Surprise to rest. Given the di-
versity of eight emotions, gestural edits offer numerous pos-
sibilities, rendering this a broad and challenging problem.
Although Fig. A.12 displays promising results for emotion
label predictions with clear diagonal pattern of the confu-
sion matrix, we acknowledge the inherent difficulty in solv-
ing this problem.

F. Data Preparation
In this section, we describe the processing and alignment
of different modalities, and the BEAT [13] data subsets em-
ployed to train the different models of our framework. We
do not use the entirety of the BEAT dataset to train AMUSE.
BEAT contains 30 speakers. We filter out subjects with lit-
tle expressivity in their motion through visual inspection of
GT, leaving us with 22 subjects. Furthermore, BEAT has a
subset that all the subjects speak the same sentences in the
same emotions. The rest of the dataset contains unique sen-
tences which are spoken only by one speaker and not the
others. We filter out all of these unique sentences. What
remains is a subset of 16 sentences (2 per emotion, for 8
emotions), spoken by every subject. This is critical since
the training of the speech disentanglement module requires
perfect temporal correspondence between the audios of the
same sentences. Except where explicitly stated otherwise,
we have used this subset and split it into train, validation,
and test sets. This subset is 5.71 hours long. We use the
same data to train our speech disentanglement model. Fur-
ther, we train our motion prior network (PE ,PD) with the
extracted SMPL-X motions of the same subsets. Finally,
the denoiser, ∆, and feature extractor used for evaluation,

Figure A.12. Emotion edit confusion matrix, displaying transi-
tions from Happy (left) and Surprise (right) emotions to oth-
ers. X-axis is for predictions and Y-axis is for ground truth.

M , are trained on the same subset and splits.

G. Review of State of the Art Methods
Data selection and input formats. To train AMUSE ef-
fectively, we require data in the form of 3D point clouds
rather than coarse BVH skeletons. Additionally, training re-
quires common utterances from multiple subjects express-
ing various emotions for audio disentanglement. Many
available gesture datasets, including [5, 17], come in var-
ious motion capture skeleton formats with different under-
lying kinematic hierarchies that are incompatible with our
conversion procedure to obtain SMPL-X meshes and do not
meet the requirement of speech common utterances. In con-
trast, for the BEAT dataset, we obtained the initial data in
the form of 3D point clouds from the dataset authors. We
use Mosh++ [14, 15] to extract SMPL-X pose and shape
parameters, along with global translation and orientation,
from the 3D point cloud. This data was then used to train
AMUSE.
SOTA methods and modifications. Given our primary
objective is to generate 3D emotional gestures from au-

Table A.5. Perceptual study. We demonstrate aggregate scores
of our perceptual study. and we disregard indifferent scores. The
ours and others are sum of % preference for (strongly ours and
weakly ours) and (strongly other and weakly other) respectively.
Only the best scores are highlighted in green .

Criteria → Emotion | Synchronization
Method ↓ Ours Others | Ours Others

GT 38 51 | 35 52
TalkSHOW-BEAT 46 39 | 62 27
TalkSHOW 54 34 | 65 28
Habibie et al. 48 42 | 66 28



dio input, we mainly compare state-of-the-art methods that
use audio input alone and output a 3D mesh. We exclude
methods that incorporate additional inputs, such as arbi-
trary lengths of target motion style, as they deviate from
our main objective, for example, Ghorbani et al. [5]. Other
recent works [2, 3] have proposed methods for generating
gestures from speech. However, making direct comparisons
is difficult as the code for their approaches is not publicly
available. We retrained Henter et al. [11] using publicly
available code and instructions, due to the unavailability of
a pretrained model. In our comparison, we used publicly
available DSG [22] model that was trained on the BEAT
dataset of coarse skeletal format. We also made modifica-
tions to the TalkSHOW code, incorporating emotion labels
as input, and retrained it on the same data used for training
our model. The emotion categorical labels were injected
inline with existing subject labels using one-hot vectors.
AMUSE outperforms both DSG and TalkSHOW-BEAT as
well as other SOTA methods in all comparisons.

H. Additional Perceptual Study Details

Here we describe additional details of the AMT study re-
ported in the Sec. 5.3. We show aggregate preference scores
in Tab. A.5. AMUSE outperforms all methods compared
against in both criteria - synchronization with the speech
and the appropriateness with respect to the specified emo-
tion. In contrast, Ground Truth (GT) consistently outper-
forms AMUSE in both tasks. This outcome emphasizes the
complexity of the problem, where achieving synchrony with
speech and meeting specified emotional appropriateness re-
main challenging objectives.

Data. We randomly select three videos per emotion from
the BEAT dataset for our perceptual study. We only use se-
quence that were not part of training or validation set. Due
to high number of subjects, we limit the input audios data
to only two subjects.

The template layout. Fig. A.13 depicts the design template
that the participants were shown. The left–right position of
our method and the competing methods was randomized to
factor out any biases that participants may have for one side
or the other.

Catch trials. Each participant was also shown three catch
trials, where a GT video was shown alongside a broken mo-
tion filled with artifacts. Participants that did not select
weak or strong preference for the GT video in any of the
catch trials were labeled as uncooperative or inattentive and
were not considered in the analysis. We selected 22, 20,
23, and 25 participants for TalkSHOW-BEAT, TalkSHOW,
Habibie et al., and GT, respectively, from a total of 25 Ama-
zon Mechanical Turk workers.
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