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Supplementary Material

1. Data samples

(a) MandelbulbVAR-1k classes

(b) MandelbulbVAR-1k instances

Figure 1. Example MandelbulbVAR-1k images. Best viewed in
color and zoomed in. (a) Images of randomly selected 50 classes
with one instance per class. (b) Images of randomly selected 50
instances in a randomly selected class.

Figs. 1 and 2 displays example images of our proposed
datasets.

2. Codes
We implement our original fractal modeling and rendering
software based on OpenGL Shading Language (GLSL) [5]
and we make it publicly available on our GitHub reposi-
tory1. We include a permissive license that allows commer-
cial use.

To pre-train CNNs and fine-tune them on supervised
classification tasks, we use the codes released by the au-
thors of [3]2. To pre-train and fine-tune ViTs, we make use
of the codes published by the authors of [7]3. Regarding

1https : / / github . com / RistoranteRist /
MandelbulbVariationsGenerator

2https : / / github . com / hirokatsukataoka16 /
FractalDB-Pretrained-ResNet-PyTorch

3https://github.com/masora1030/CVPR2023-FDSL-
on-VisualAtom

(a) MandelbulbVAR-Hybrid-21k classes

(b) MandelbulbVAR-Hybrid-21k instances

Figure 2. Example MandelbulbVAR-Hybrid-21k images. Best
viewed in color and zoomed in. (a) Images of randomly selected
50 classes with one instance per class. (b) Images of the 50 in-
stances in a randomly selected class.

WideResNet-50 models for the anomaly detection task, we
pre-train them using our own training codes. Once their
pre-trained weights are saved, we run and evaluate Patch-
Core algorithms based on them by using the official codes
released by the authors of PatchCore [6]4.

3. Training hyper-parameters for ViT pre-
training and fine-tuning

Training hyper-parameters related to our experiments using
ViTs are summarized in Tab. 1. They are almost the same
as in the studies [7, 8].

4. CNN pre-training on MandelbulbVAR-
Hybrid-21k

Tab. 2 shows the average classification accuracies of
ResNet-50 models pre-trained on various datasets including
MandelbulbVAR-Hybrid-21k. Tab. 3 includes the anomaly

4https://github.com/amazon-science/patchcore-
inspection
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Phase Pre-training Fine-tuning
# Dataset classes 1k & 21k 1k others

Epochs 300 300 1000
Batch size 1024 1024 768
Optimizer AdamW AdamW SGD

LR 1.0e-3 1.0e-3 1.0e-2
Weight decay 0.05 0.05 1.0e-4
LR scheduler Cosine Cosine Cosine
Warmup steps 5k - -

Warmup epochs - 5 10
Resolution 224 224 224

Label smoothing 0.1 0.1 0.1
Drop path 0.1 0.1 0.1

Rand augment 9/0.5 9/0.5 9/0.5
Mixup 0.8 0.8 0.8
Cutmix 1.0 1.0 1.0
Erasing 0.25 0.25 0.25

Table 1. Hyper-parameters employed when training ViT-T and
ViT-B models in our experiments.

Pre-training Average accuracy

From scratch 74.6
FractalDB-1k 82.2

FractalDB-10k* 83.5
VisualAtom-1k 83.1

RCDB-1k 82.1
ExFractalDB-1k 82.4

MandelbulbVAR-1k 84.5
MandelbulbVAR-Hybrid-21k 84.5

Table 2. Average top-1 accuracy of ResNet-50 models over the
validation sets of ImageNet-1k, CIFAR-10, CIFAR-100, Flowers
and ImageNet-100. These models are either trained from scratch
or fine-tuned after being pre-trained on different datasets. Best,
second-best, and third-best scores are shown in underlined bold,
bold, and underlined, respectively. The model with * is down-
loaded from the project page of the work [3].

detection performance recorded by PatchCore based on
MandelbulbVAR-Hybrid-21k pre-trained WideResNet-50.
On the one hand, MandelbulbVAR-Hybrid-21k pre-training
outperforms existing FDSL regarding both anomaly detec-
tion and classification downstream tasks. For example, re-
garding anomaly detection, the average image-level AU-
ROC recorded by PatchCore based on MandelbulbVAR-
Hybrid-21k is better than the one recorded by the algorithm
based on VisualAtom-1k (96.7% vs 92.7%). On the other
hand, in any case, MandelbulbVAR-Hybrid-21k does not
perform better than MandelbulbVAR-1k. For classification,
they present the same average accuracy. For anomaly detec-
tion, MandelbulbVAR-1k pre-training is better than the one
based on MandelbulbVAR-Hybrid-21k. For example, be-

Pre-training
Img.

AUROC
Pw.

AUROC PRO

Rand. init. 77.2 85.9 55.8
ImageNet-1k 99.1 98.1 93.4

ExFractalDB-1k 87.4 92.8 72.3
RCDB-1k 77.7 88.6 68.1

VisualAtom-1k 92.7 93.9 80.3
FractalDB-1k 90.6 90.7 70.8

MandelbulbVAR-1k 97.2 96.8 89.6
MandelbulbVAR-21k 96.7 96.8 89.3

Table 3. Anomaly detection performance (average image-level
AUROC, pixel-wise AUROC and PRO in %) on MVTec AD [2].
PatchCore [6] with WideResNet-50 feature extractor is used. The
memory bank subsampling rate is 10%. The pre-training col-
umn indicates the feature extractor has been either pre-trained on
a dataset or randomly initialized. MandelbulbVAR-21k means
MandelbulbVAR-Hybrid-21k. Best, second-best, and third-best
scores are shown in underlined bold, bold, and underlined, respec-
tively.

tween these pre-training schemes, there is a gap in average
image-level AUROC of 0.5% (97.2% vs 96.7%). We con-
clude that contrary to ViTs, CNNs do not benefit from the
shape diversity of MandelbulbVAR-Hybrid-21k. As CNNs
have lower shape bias than ViTs [9], this result is not sur-
prising.

5. Impact of using colored images instead of
grayscale ones

To measure the impact of using colored images instead
of grayscale ones, we also generate MandelbulbVAR-1k-
gray and MandelbulbVAR-Hybrid-21k-gray. To do so, we
use the same generative parameters as MandelbulbVAR-
1k and MandelbulbVAR-Hybrid-21k, respectively, ex-
cept that all of the images in MandelbulbVAR-1k-
gray and MandelbulbVAR-Hybrid-21k-gray are grayscale,
similar to Fig. 3 in the main paper. According
to Tab. 4, regarding CNN classification and anomaly de-
tection, MandelbulbVAR-1k outperforms MandelbulbVAR-
1k-gray by respective margins of 1.2% (84.5% vs.
83.3%) and 1.9% (97.2% vs. 95.3%). Regarding
ViT classification, MandelbulbVAR-Hybrid-21k outper-
forms MandelbulbVAR-Hybrid-21k-gray by a gap of 0.1%
(88.3% vs. 88.2%). These results quantify the gain in CNN
and ViT pre-training performance brought by adding colors.

Regarding CNN pre-training, the positive performance
gain brought by adding colors was also reported in past
studies: [1] found that using fractal images generated with
color and backgrounds leads to better pre-training. [3] found
that adding colors to their 2D fractals made the pre-training
better, compared to using grayscale images. Regarding ViT



Pre-training Anomaly detection CNN classification ViT classification
MandelbulbVAR-1k 97.2 84.5 -

MandelbulbVAR-1k-gray 95.3 83.3 -
MandelbulbVAR-Hybrid-21k - - 88.3

MandelbulbVAR-Hybrid-21k-gray - - 88.2

Table 4. Comparison between colored and grayscale pre-training datasets. The anomaly detection column reports the average image-level
AUROC recorded by PatchCore over MVTec AD. The CNN classification and ViT classification columns show the average accuracy
recorded by ResNet50 and ViT-T respectively, over ImageNet-1k, CIFAR-10, CIFAR-100, Flowers and ImageNet-100. The best score is
in bold. All metrics are in %.

pre-training, our result contradicts one of the discoveries re-
ported in the work [4]: this study found that grayscale Frac-
talDB images were better than the colored ones concerning
ViT pre-training. However, in our study, adding colors ben-
efits less ViT pre-training than CNN pre-training. The per-
formance gain is smaller for ViT than CNN (0.1 points vs.
1.2 points regarding average classification accuracy). This
result is not surprising, as ViTs have lower texture bias than
CNNs [9].

6. Pre-training ResNet-50 for anomaly detec-
tion

pre-training
Img.

AUROC
Pw.

AUROC PRO

Rand. init. 80.1 89.0 63.2
ImageNet-1k 99.0 98.1 93.1

ExFractalDB-1k 86.5 92.2 71.7
RCDB-1k 78.3 88.5 66.6

VisualAtom-1k 92.2 93.2 77.8
FractalDB-1k* 86.1 92.9 73.4

FractalDB-10k* 80.3 91.8 69.1
MandelbulbVAR-1k 96.7 96.8 89.3

Table 5. Anomaly detection performance (Average image-level
AUROC, pixel-wise AUROC and PRO) on MVTec AD [2]. The
PatchCore algorithm [6] with ResNet-50 feature extractor is used.
The memory bank subsampling rate is 10%. The pre-training col-
umn indicates the feature extractor has been either pre-trained on
a dataset or randomly initialized. Models with * are downloaded
from the project page of the work [3]. Best, and second-best scores
are shown in underlined bold, and bold, respectively.

Tab. 5 compares the anomaly detection performance on
MVTec AD of PatchCore algorithms relying on ResNet-50
feature extractors. These networks are pre-trained on dif-
ferent datasets. We obtain the same conclusion as the main
paper. First, in terms of each performance metric, Patch-
Core used along with the feature extractor pre-trained on
MandelbulbVAR-1k performs the second best right after the
algorithm based on the ImageNet-1k pre-training. The per-

formance gaps between them are relatively low (2.3, 1.3 and
3.8 points in image-level AUROC, pixel-wise AUROC and
PRO, respectively). Second, pre-training on our proposed
dataset outperforms existing FDSL methods. Among them,
the one based on VisualAtom-1k performs the best. But
between the latter and ours, there are gaps of 4.5, 3.6 and
11.5 points in image-level AUROC, pixel-wise AUROC and
PRO, respectively.
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