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1. Training and Evaluation Datasets

We evaluate MagNet on the three standard benchmark
datasets: RefCOCO [10], RefCOCO+ [10], and G-Ref
[6, 7]. RefCOCO and RefCOCO+ contain 19,994 and
19,992 images, respectively, with 142,209 and 141,564 an-
notated expressions that refer to 50,000 and 49,856 object
regions. In contrast, G-Ref contains 26,711 images with
104,560 annotated expressions that refer to 54,822 object
regions. Expressions in these datasets are concise with
an average length of 3.5 words. However, RefCOCO+ is
harder as it disallows location words. G-Ref is the hardest as
it contain longer (an average length of 8.4 words) and more
complex expressions. For G-Ref, we validate our method
on both the UMD [7] and the Google [6] partition.

2. Evaluation Metrics

We assess our proposed method using three commonly
used metrics: overall intersection-over-union (oIoU), mean
intersection-over-union (mIoU), and precision values at 0.5,
0.7, and 0.9 IoU threshold levels. The oIoU metric is de-
fined as the ratio of the total intersection area over the total
union area between the predictions and ground truth of all
test data. This metric is sensitive to the segmentation ac-
curacy of large objects. The mIoU metric calculates the
average IoU of all test data. This metric treats large and
small objects equally. Lastly, the precision metric measures
the percentage of test samples that passeses through an IoU
threshold. All these metrics collectively provide a compre-
hensive evaluation of our proposed method.

3. Implementation Details

MagNet is built on top of LAVT and has a total computa-
tional cost of 159.14 GFLOPs and a FPS of 3.8 (on RTX
4090). We adopt Swin-Base [4] with patch size 4 × 4 and
window size 12 × 12 as our image encoder, and BERT-
Base [2] with hidden dimension 768 as our language en-
coder. We initialize Swin-Base with the official classifi-
cation weights pretrained on ImageNet22K [3] and BERT-
Base with the bert-base-uncased weights from Hugging-
Face’s Transformer library [8]. The rest of the weights in
our model are randomly initialized. We use exactly the
same pixel decoder and Transformer decoder implemented
in the open-source Mask2Former [1] codebase without any
modification. Our pixel decoder has 4 layers and hidden
dimension of 256. Our Transformer decoder has 9 layers
and 1 object query as there is only 1 ground truth mask
for each image in RIS. Following LAVT [9], we adopt the

AdamW [5] optimizer with weight decay 0.01 and initial
learning rate 5e-5. The learning rate is reduced using the
polynomial learning rate decay. Our model is trained for 40
epochs using batch size of 32. All input images are resized
to 480 × 480 without using any data augmentation and all
text tokens are zero padded to a maximum length of 20 to-
kens. For Mask Grounding, we use a corruption probability
of 0.15 and a masked token predictor with 8 BERT layers.
For cross-modal alignment module, we use 4 different av-
erage pooling layers to pool the input feature map to output
sizes of 1 × 1, 2 × 2, 3 × 3 and 6 × 6. For cross-modal
alignment loss, we set τ1 = 0.1 and τ2 = 0.3.

4. Limitations
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Figure 1. Visualization of MagNet’s failure cases.

Although MagNet achieves impressive overall performance
for referring image segmentation, its segmentation accuracy
at the object boundaries still has some room for improve-
ments. As shown in Fig. 1, when the objects are occluded or
have unclear boundaries, MagNet’s predicted masks might
miss some target pixels or spill over to other objects. This
problem can be attributed to a lack of boundary supervision
and relatively low mask annotation quality in the training
datasets. We anticipate future work to further improve the
performance of MagNet by tackling these issues.



5. How Mask Grounding can be used in any existing RIS method?
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Figure 2. Mask Grounding can be used as an auxiliary task in any existing RIS method to boost performance by improving fine-grained
visual grounding. The main RIS task is to predict the segmentation mask based on referring expression, whereas the auxiliary Mask
Grounding task is to predict the identity of the masked textual token. In order to perform Mask Grounding, we only need to add a light-
weight Mask Encoder to encode the segmentation mask and a light-weight Masked Token Predictor to predict the masked textual token
based on the visual, textual and segmentation information.



6. More Visualizations
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Figure 3. More visualizations of MagNet predictions on RefCOCO.
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Figure 4. More visualizations of MagNet predictions on RefCOCO+.
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