
CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation
Supplementary Materials

Seokju Cho1,∗ Heeseong Shin1,∗ Sunghwan Hong1

Anurag Arnab2 Paul Hongsuck Seo1,† Seungryong Kim1,†

1Korea University 2Google Research
{seokju cho, hsshin98, sung hwan, phseo, seungryong kim}@korea.ac.kr

aarnab@google.com

CLIP Im
age enc.

Cost Com
puta2on

CLIP Text enc.

Spa2al Aggrega2on

U
psam

pling
Dec. Layer

U
psam

pling
Dec. Layer

Prediction Head

×𝑁!

𝐸"

𝐸#

(c)

Upsampling

[·]
Transposed

Conv.

Conv2D

GN

ReLU

Conv2D

GN

ReLU

(b)(a)

𝐸$%&#
Class Aggregation
Linear Trans. Block [·]

Q

[·]

K V

Self-Attention

LN

MLP

LNProj.

𝐸#/𝐸"

Sw
in

Trans. Block
Sw

in
Trans. Block

𝐸$%&,(#

“A photo of 
a {cat}”

𝐸$%&,)#

Figure 1. More architectural details of CAT-Seg: (a) overall architecture. (b) embedding guidance. Note that a generalized embedding
guidance is illustrated to include different attention designs, i.e., shifted window attention [21] or linear attention [17]. (c) upsampling
decoder layer. GN: Group Normalization [37]. LN: Layer Normalization [1].

In the following, we provide the full results from
MESS [4] in Section A. We further provide implementa-
tion details in Section B. We then provide additional exper-
imental results and ablation study in Section C. Finally, we
present qualitative results for the benchmarks in Section D
and a discussion of limitations in Section E.

A. More Results

Full quantitative results on MESS benchmark. In Ta-
ble 1, we provide the results of all 22 datasets within
MESS [4], including results from Grounded-SAM [13].

B. More Details

B.1. Architectural Details

In the following, we provide more architectural details. Our
detailed overall architecture is illustrated in Fig. 1 (a).

∗Equal contribution. †Corresponding authors.

Embedding guidance. In this paragraph, we provide more
details of embedding guidance, which is designed to facil-
itate the cost aggregation process by exploiting its rich se-
mantics for a guidance. We first extract visual and text em-
beddings from CLIP encoders [26]. The embeddings then
undergo linear projection and concatenated to the cost vol-
ume before query and key projections in aggregation layer.
The design is illustrated in Fig. 1 (b).

Upsampling decoder. The detailed architecture is il-
lustrated in Fig. 1(c). In our upsampling decoder, we
start by taking high-resolution features from the CLIP ViT
model [9]. We then apply a single transposed convolution
layer to these extracted features to generate an upsampled
feature map. Initially, the extracted feature maps have a res-
olution of 24 × 24 pixels. However, after processing them
with the transposed convolution operation, we increase their
resolution to 48×48 pixels for the first feature map, denoted
as EV

Dec,1, and to 96×96 pixels for the second feature map,
denoted as EV

Dec,2.
To obtain EV

Dec,1, we utilize the output of the 8th layer
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Random (LB) 1.48 1.31 1.27 0.23 0.56 2.16 0.56 8.02 18.43 3.39 5.18 27.99 27.25 31.25 31.53 9.3 26.52 4.52 6.49 5.3 0.06 13.08 10.27
Best sup. (UB) 44.8 63.9 50.0 45.1 42.22 45.71 65.3 87.56 92.71 82.22 67.8 93.7 97.05 73.45 93.77 49.92 85.9 82.3 52.5 74.0 84.6 87.23 70.99

ZSSeg-B 32.36 16.86 7.08 8.17 22.19 33.19 3.8 11.57 23.25 20.98 30.27 46.93 37.0 38.7 44.66 3.06 25.39 18.76 8.78 30.16 4.35 32.46 22.73
ZegFormer-B 14.14 4.52 4.33 10.01 18.98 29.45 2.68 14.04 25.93 22.74 20.84 27.39 12.47 11.94 18.09 4.78 29.77 19.63 17.52 28.28 16.8 32.26 17.57
X-Decoder-T 47.29 24.16 3.54 2.61 27.51 26.95 2.43 31.47 26.23 8.83 25.65 55.77 10.16 11.94 15.23 1.72 24.65 19.44 15.44 24.75 0.51 29.25 19.8
SAN-B 37.4 24.35 8.87 19.27 36.51 49.68 4.77 37.56 31.75 37.44 41.65 69.88 17.85 11.95 19.73 3.13 50.27 19.67 21.27 22.64 16.91 5.67 26.74
OpenSeeD-T 47.95 28.13 2.06 9.0 18.55 29.23 1.45 31.07 30.11 23.14 39.78 59.69 46.68 33.76 37.64 13.38 47.84 2.5 2.28 19.45 0.13 11.47 24.33
Gr.-SAM-B 41.58 20.91 29.38 10.48 17.33 57.38 12.22 26.68 33.41 19.19 38.34 46.82 23.56 38.06 41.07 20.88 59.02 21.39 16.74 14.13 0.43 38.41 28.52
CAT-Seg-B 46.71 28.86 23.74 26.69 40.31 65.81 19.34 45.36 35.72 37.57 41.55 48.2 16.99 15.7 31.48 12.29 31.67 19.88 17.52 44.71 10.23 42.77 31.96

OVSeg-L 45.28 22.53 6.24 16.43 33.44 53.33 8.28 31.03 31.48 35.59 38.8 71.13 20.95 13.45 22.06 6.82 16.22 21.89 11.71 38.17 14.0 33.76 26.94
SAN-L 43.81 30.39 9.34 24.46 40.66 68.44 11.77 51.45 48.24 39.26 43.41 72.18 7.64 11.94 29.33 6.83 23.65 19.01 18.32 40.01 19.3 1.91 30.06
Gr.-SAM-L 42.69 21.92 28.11 10.76 17.63 60.8 12.38 27.76 33.4 19.28 39.37 47.32 25.16 38.06 44.22 20.88 58.21 21.23 16.67 14.3 0.43 38.47 29.05
CAT-Seg-L 47.87 34.96 32.54 33.31 45.61 73.82 20.58 50.81 46.42 41.36 40.79 61.13 3.72 11.94 22.02 11.03 19.9 22.0 27.87 53.0 22.93 39.91 34.7

Table 1. Full results of quantitative evaluation on MESS [4].
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Figure 2. Illustration of the patch inference. During inference,
we divide the input image into patches, thereby increasing the ef-
fective resolution.

for the ViT-B/16 model, and for the ViT-L/14 model, we use
the output of the 16th layer. For the extraction of EV

Dec,2,
we employ shallower features: the output of the 4th layer
for the ViT-B/16 model as a VLM, and the output of the 8th
layer for the ViT-L/14 model. These features are employed
to enhance cost embeddings with fine details using a U-Net-
like architecture [28].

B.2. Other Implementation Details

Training details. A resolution of H = W = 24 is used
during training for constructing cost volume. The position
embeddings of the CLIP image encoder is initialized with
bicubic interpolation [33], and we set training resolution
as 384 × 384. For ViT-B and ViT-L variants, we initial-
ize CLIP [26] with official weights of ViT-B/16 and ViT-
L/14@336px respectively. All hyperparameters are kept
constant across the evaluation datasets.

Text prompt templates. To obtain text embeddings from
the text encoder, we form sentences with the class names,
such as "A photo of a {class}". We do not ex-
plore handcrafted prompts in this work, but it is open for
future investigation.

B.3. Patch Inference

The practicality of Vision Transformer (ViT) [9] for high-
resolution image processing has been limited due to its
quadratic complexity with respect to the sequence length.
As our model leverages ViT to extract image embeddings,

CAT-Seg may struggle to output to the conventional image
resolutions commonly employed in semantic segmentation
literature, such as 640 × 640 [6, 12], without sacrificing
some accuracy made by losing some fine-details. Although
we can adopt the same approach proposed in [42] to upsam-
ple the positional embedding [42], we ought to avoid in-
troducing excessive computational burdens, and thus adopt
an effective inference strategy without requiring additional
training which is illustrated in Fig. 2.

To this end, we begin by partitioning the input image into
overlapping patches of size H

NP
× W

NP
. Intuitively, given an

image size of 640 × 640, we partition the image to sub-
images of size 384× 384, which matches the image resolu-
tion at training phase, and each sub-images has overlapping
regions 128×128. Subsequently, we feed these sub-images
and the original image that is resized to 384 × 384 into the
model. Given the results for each patches and the image,
we merge the obtained prediction, while the overlapping re-
gions are averaged to obtain the final prediction. In practice,
we employ NP = 2, while adjusting the overlapping region
to match the effective resolution of 640× 640.

B.4. More Details of MESS Benchmark

In Table 2, we provide details of the datasets in the MESS
benchmark [4].

C. Additional Ablation Study

C.1. Ablation Study of Inference Strategy

Methods A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

CAT-Seg w/ training reso. 14.6 22.1 35.7 60.9 96.3 79.9
Ours 16.0 23.8 37.9 63.3 97.0 82.5

Table 3. Ablation study of inference strategy. CLIP with ViT-L
is used for ablation.

Table 3 presents effects of different inference strategies for
our model. The first row shows the results using the train-
ing resolution at inference time. The last row adopts the
proposed patch inference strategy. It is shown that our pro-



Dataset Link Licence Split # of classes Classes

BDD100K [39] berkeley.edu custom val 19 [road; sidewalk; building; wall; fence; pole; traffic light; traffic sign; ...]
Dark Zurich [29] ethz.ch custom val 20 [unlabeled; road; sidewalk; building; wall; fence; pole; traffic light; ...]
MHP v1 [18] github.com custom test 19 [others; hat; hair; sunglasses; upper clothes; skirt; pants; dress; ...]
FoodSeg103 [36] github.io Apache 2.0 test 104 [background; candy; egg tart; french fries; chocolate; biscuit; popcorn; ...]
ATLANTIS [10] github.com Flickr (images) test 56 [bicycle; boat; breakwater; bridge; building; bus; canal; car; ...]
DRAM [7] ac.il custom (in download) test 12 [bird; boat; bottle; cat; chair; cow; dog; horse; ...]
iSAID [34] github.io Google Earth (images) val 16 [others; boat; storage tank; baseball diamond; tennis court; bridge; ...]
ISPRS Potsdam [5] isprs.org no licence provided test 6 [road; building; grass; tree; car; others]
WorldFloods [24] github.com CC NC 4.0 test 3 [land; water and flood; cloud]
FloodNet [27] github.com custom test 10 [building-flooded; building-non-flooded; road-flooded; water; tree; ...]
UAVid [22] uavid.nl CC BY-NC-SA 4.0 val 8 [others; building; road; tree; grass; moving car; parked car; humans]
Kvasir-Inst. [16] simula.no custom test 2 [others; tool]
CHASE DB1 [11] kingston.ac.uk CC BY 4.0 test 2 [others; blood vessels]
CryoNuSeg [23] kaggle.com CC BY-NC-SA 4.0 test 2 [others; nuclei in cells]
PAXRay-4 [30] github.io custom test 4x2 [others, lungs], [others, bones], [others, mediastinum], [others, diaphragm]
Corrosion CS [3] figshare.com CC0 test 4 [others; steel with fair corrosion; ... poor corrosion; ... severe corrosion]
DeepCrack [20] github.com custom test 2 [concrete or asphalt; crack]
PST900 [31] github.com GPL-3.0 test 5 [background; fire extinguisher; backpack; drill; human]
ZeroWaste-f [2] ai.bu.edu CC-BY-NC 4.0 test 5 [background or trash; rigid plastic; cardboard; metal; soft plastic]
SUIM [15] umn.edu MIT test 8 [human diver; reefs and invertebrates; fish and vertebrates; ...]
CUB-200 [35] caltech.edu custom test 201 [background; Laysan Albatross; Sooty Albatross; Crested Auklet; ...]
CWFID [14] github.com custom test 3 [ground; crop seedling; weed]

Table 2. Details of the datasets in the MESS benchmark [4].

posed approach can bring large performance gains, com-
pared to using the training resolution.

C.2. Ablation on VLM

VLM A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

EVA-02-CLIP-L/14 [32] 16.4 24.5 37.8 62.7 97.9 83.7
SigLIP-ViT-L/16 [40] 18.0 26.1 39.1 60.9 97.2 80.8
CLIP-ViT-L/14 16.0 23.8 37.9 63.3 97.0 82.5

Table 4. Results on various VLMs.

Table 4 shows the results with various VLMs. We found that
CAT-Seg can be applied to various VLMs, and better results
can be obtained when a more powerful model is applied.

D. More Qualitative Results
We provide more qualitative results on A-847 [41] in Fig. 3,
PC-459 [25] in Fig. 4, A-150 [41] in Fig. 5, and PC-59 [25]
in Fig. 6. We also further compare the results in A-847 [41]
with other methods [8, 19, 38] in Fig. 7.

E. Limitations
To evaluate open-vocabulary semantic segmentation results,
we follow [12, 19] and compute the metrics using the other
segmentation datasets. However, since the ground-truth
segmentation maps involve some ambiguities, the reliabil-
ity of the evaluation dataset is somewhat questionable. Con-
structing a more reliable dataset including ground-truths ac-
counting for above issue for accurate evaluation is an in-
triguing topic.

https://bdd-data.berkeley.edu
https://doc.bdd100k.com/license.html
https://www.trace.ethz.ch/publications/2019/GCMA_UIoU/
https://github.com/ZhaoJ9014/Multi-Human-Parsing
https://lv-mhp.github.io/
https://xiongweiwu.github.io/foodseg103.html
https://github.com/smhassanerfani/atlantis
https://faculty.runi.ac.il/arik/site/artseg/Dram-Dataset.html
https://captain-whu.github.io/iSAID/dataset.html
https://www.isprs.org/education/benchmarks/UrbanSemLab/default.aspx
https://github.com/spaceml-org/ml4floods/blob/main/jupyterbook/content/worldfloods_dataset.md
https://github.com/BinaLab/FloodNet-Supervised_v1.0
https://cdla.dev/permissive-1-0/
https://uavid.nl
https://datasets.simula.no/kvasir-instrument/
https://datasets.simula.no/kvasir-instrument/
https://blogs.kingston.ac.uk/retinal/chasedb1/
https://www.kaggle.com/datasets/ipateam/segmentation-of-nuclei-in-cryosectioned-he-images
https://constantinseibold.github.io/paxray/
https://constantinseibold.github.io/paxray/
https://figshare.com/articles/dataset/Corrosion_Condition_State_Semantic_Segmentation_Dataset/16624663
https://github.com/yhlleo/DeepCrack/tree/master
https://github.com/yhlleo/DeepCrack/tree/master
https://github.com/ShreyasSkandanS/pst900_thermal_rgb
http://ai.bu.edu/zerowaste/
https://irvlab.cs.umn.edu/resources/suim-dataset
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://github.com/cwfid/dataset
https://github.com/cwfid/dataset
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Figure 3. Qualitative results on ADE20K [41] with 847 categories.
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Figure 4. Qualitative results on PASCAL Context [25] with 459 categories.
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Figure 5. Qualitative results on ADE20K [41] with 150 categories.
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Figure 6. Qualitative results on PASCAL Context [25] with 59 categories.
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Figure 7. Comparison of qualitative results on ADE20K [41] with 847 categories. We compare CAT-Seg with ZegFormer [8],
ZSseg [38], and OVSeg [19] on A-847 dataset.
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