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– Supplementary Material –

A. Training Details
A.1. Training Preparation

In order to train one-shot structure-aware stylized image
synthesis (OSASIS), it is necessary to create a photoreal-
istic image, denoted as IstyleA , that is semantically aligned
with a given style image, IstyleB . This is achieved by first
encoding IstyleB into a latent code, represented as xt0 using
Eq.9. Then IstyleA is generated from xt0 using Eq.10, utiliz-
ing a pretrained DDPM ϵθ during its encoding and genera-
tion phases. However, since these processes are stochastic
in nature, the resulting IstyleA may not always align perfectly
with IstyleB . To overcome this, we generate 30 images from
IstyleB and evaluate their alignment with IstyleB using both the
L1 loss and perceptual similarity loss [10]. We then select
the image that is most similar to IstyleB as IstyleA as the prime
candidate. In cases of out-of-domain (OOD) reference im-
ages, we match the domain of the pretrained DDPM with
the domain of the style image. (e.g. for church style im-
ages, we use a pretrained DDPM trained on LSUN-church).

A.2. Structure-Preserving Network

The structure-preserving network (SPN) incorporates a 1x1
convolution to preserve the overall structure of the input im-
age. During the reverse process, the SPN’s output is inte-
grated with the DDIM output. Given that this integration
takes place at every timestep, it is crucial for the network
to recognize the timestep to effectively control structure
preservation. To facilitate this, each block of the SPN is
conditioned on the timestep. The detailed architecture of
the SPN is illustrated in Figure 10.

A.3. Loss Function Formulation

Cross-Domain Loss The objective of the cross-domain
loss is to align the directional shifts from domain A to do-
main B, ensuring that the change from I inA to I inB is kept
consistent with the change from IstyleA to IstyleB . Leveraging
the CLIP image encoder EI , latent vectors of both the input
and style images are extracted. Subtracting these semanti-
cally aligned latent vectors results in semantically meaning-
ful directions. The changes in the style and input images are
calculated using Eq.15 and Eq.16, respectively. The cosine
similarity, as described in Eq. 17, is then used to evaluate
the similarity of the two directions.

vstyle = EI(I
style
B )− EI(I

style
A ) (15)

vin = EI(I
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B )− EI(I

in
A ) (16)

Lcross = 1− sim(vstyle,vin) (17)

In-Domain Loss The purpose of the in-domain loss is
to mitigate unintended changes in the direction of styliza-
tion, which can often result in excessive reflection of the
style image. This is achieved by measuring the similarity
of changes within both domains A and B. Like the cross-
domain loss, the in-domain changes are calculated using
Eq.18 and Eq.19. The similarity between the two directions
is then determined using Eq. 20.

vA = EI(I
cont
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vB = EI(I
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B ) (19)

LIn = 1− sim(vA,vB) (20)

Reconstruction Loss The reconstruction loss aims to
guarantee that the photorealistic style image IstyleA can be
accurately translated from domain A to domain B. This is
achieved by encoding IstyleA using ϵAθ , which results in the
latent vectors zstylesem and xstyle

t0
. The latent vectors are then

fed into ϵBθ , which generates the predicted domain B style
image ÎstyleB . The reconstruction loss is calculated by com-
paring ÎstyleB with IstyleB and the summation of the L1 loss,
perceptual similarity loss [10], and the L1 CLIP embedding
loss described in Eq. 22-24. The total reconstruct loss can
be computed using Eq. 25.

ˆ
IstyleB = ϵBθ (z

style
sem ,xstyle

T ) (21)

Lre−image = L1(I
style
B ,

ˆ
IstyleB ) (22)

Lre−lpips = Llpips(I
style
B ,

ˆ
IstyleB ) (23)

Lre−clip = L1(EI(I
style
B ), EI(

ˆ
IstyleB )) (24)

Lrecon = λre−imageLre−image + λre−lpipsLre−lpips

+λre−clipLre−clip (25)

Total Loss The total loss is a weighted sum of the afore-
mentioned cross-domain, in-domain, and reconstruction
loss, formulated by the following equation:

Ltotal = λcrossLcross + λinLin + Lrecon (26)

B. Sampling Details
B.1. Mixing Content and Style

After training the DDIM ϵBθ , we can combine the content of
the input images with the style of style images. We achieve
this by encoding these images into semantic latent codes,
specifically zinsem for input and zstylesem for style. It is impor-
tant to note that during training, zstylesem comes from IstyleA ,
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Figure 10. The SPN architecture is comprised of SPN blocks, each
consisting of two 1x1 convolutions with group normalizations [9]
and swish activations [5]. To incorporate the temporal informa-
tion of each timestep, the SPN block employs sinusoidal position
embeddings [7], represented as ψ for each time step. Timestep
embedding (TE) layers are also incorporated, consisting of two
linear layers. To condition the SPN block on the current timestep,
we use the timestep embedding as a scale and shift parameter of
group normalization, which is similar to previous works [3].

but for sampling, it is sourced from IstyleB . Using the pre-
trained DDIM ϵAθ , we encode I inA into a structural latent
code xin

t0 . From xin
t0 , ϵBθ generates a stylized image. The

process of generating a stylized image is similar to the pro-
cess of generating I inB from I inA , as described in Eq.12-14.
However, the sampling step involves two semantic latent
codes, zinsem and zstylesem , so the generation process is adjusted
accordingly:

xt−1 =
√
αt−1fθ(x

′
t, t, z

in
sem, z

style
sem )+√

1− αt−1ϵ
B
θ (x

′
t, t, z

in
sem, z

style
sem ) (27)

zstylesem is conditioned on low-level feature maps, while zinsem
is conditioned on high-level feature maps. The separation
between these feature maps is done using fch. The overall
sampling process is illustrated in Figure 12.

B.2. Text-driven Manipulation

To enable text-driven image manipulation, we utilize CLIP
directional loss, as in previous works [4]. The CLIP direc-
tional loss aligns the source-to-target text change with the
source-to-target image change, similar to the cross-domain
loss. The CLIP text encoder is denoted as ET , and the tar-
get and source text is represented as Ttrg and Tsrc, respec-
tively. The source image I inA is encoded into semantic and
structural latent codes, zinsem and xin

t0 , using DDIM ϵAθ . We
freeze xin

t0 and ϵAθ , and optimize zinsem to obtain the optimal
semantic latent code zin∗sem. Following this, employing xin

t0
and zin∗sem allows us to derive I inopt utilizing DDIM ϵBθ . The
CLIP directional loss is computed as follows:

vtext = ET (Ttrg)− ET (Tsrc) (28)

vimage = EI(I
in
opt)− EI(I

in
A ) (29)

Ltext = 1− sim(vtext,vimage) (30)

𝐼𝑠𝑡𝑦𝑙𝑒
𝐴 𝐼𝑠𝑡𝑦𝑙𝑒

𝐵 Input Output

Figure 11. Reliance on IstyleA . The representation of IstyleA is
stochastic, it can be adjusted through the sampling process tran-
sitioning from IstyleB to IstyleA . Notably, stylization results maintain
consistent visual quality irrespective of variations in IstyleA .

C. Additional Experiments and Limitations
C.1. Experiments Settings

The encoding timestep t0 is set to 500, equating to half
of the total timesteps. Based on empirical findings, we
define the loss function parameters as λre−image = 10,
λre−lpips = 10, λre−clip = 30, λcross = 1, and λin = 0.5.
For the SPN, we assign λSPN = 0.1. During sampling, fch
is configured to 32, indicating that zstylesem conditions up to
the 32-resolution feature maps while other blocks are con-
ditioned on zinsem.

C.2. Reliance on IstyleA

The generation of IstyleA is inherently stochastic, leading to
variations in its visual quality. However, the efficacy of our
method is not intrinsically tied to the visual fidelity of IstyleA .
As depicted in Figure 11, despite the varying visual pre-
sentations of IstyleA , our method consistently produces re-
liable stylization results. The resilience of our approach
stems from the stylization trajectory determined in the CLIP
space, thereby decoupling it from the aesthetic variations
of IstyleA . To mitigate any misalignment that might arise
between IstyleA and IstyleB , we adopt a systematic sampling
methodology, subsequently auto-selecting the most congru-
ent image, as outlined in Training Preparation.

C.3. Additional Results

In this section, we present additional stylization results and
its comparisons with other stylization methods. Figure 13
shows the stylization outcomes of the original MTG [11]
and JoJoGAN [2], which utilizes e4e [6] and ReStyle [1]
respectively for inversion. Compared to HFGI [8], these
methods struggle to preserve the structure of the input im-
age leading to a loss of key elements, such as hands and
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Figure 12. Sampling process of OSASIS. In contrast to the training phase, during the sampling process, zstylesem is derived from IstyleB . To
integrate the content from the input with the style of the style image, we condition the DDIM ϵBθ , on zstylesem and zinsem, respectively. This
conditioning is separated by fch.

MTG JoJoGAN DiffuseIT InST OSASIS(Ours)
10.0% 20.0% 0.0% 5.0% 65.0%

Table 3. User study of stylized images from OSASIS and baselines

accessories. Additional stylization results on comparison
methods are shown in Figure 14, where OSASIS outper-
forms other methods in structural preservation while styliz-
ing. Figure 15 shows the stylization results of OOD refer-
ence images. Table 4 encapsulates a comprehensive quanti-
tative comparison, encompassing both low and high-density
image results.

C.4. User Evaluation results of qualitative samples

While quantitative assessments provide quality metrics,
user studies offer deeper insights into a stylization model’s
effectiveness. Thus, we included the results of a preference-
based user study in Table 3, where participants evaluated 20
stylization outcomes from OSASIS and its baselines against
input and style images. The study documented the selec-
tion ratio for each method, aiming to discern the model that
most effectively harmonizes input structure with stylistic el-
ements. OSASIS emerged as the favored choice in Table 3,
underscoring its excellence in meeting human perceptual
standards.
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Figure 13. Stylization results of MTG and JoJoGAN.

Methods ArtFID↓ ID Similarity↑ Structure Similarity↓
AAHQ MetFaces Prev AAHQ MetFaces Prev AAHQ MetFaces Prev

High
Density

MTG 34.54 34.73 35.18 0.2026 0.2562 0.2219 0.0403 0.0493 0.0477
MTG+HFGI 35.03 37.19 36.23 0.3260 0.4362 0.3688 0.0357 0.0375 0.0370
JoJoGAN 41.93 43.99 36.95 0.3783 0.3477 0.3280 0.0389 0.0465 0.0441
JoJoGAN+HFGI 41.20 43.32 39.29 0.4927 0.4921 0.4353 0.0327 0.0385 0.0346
DiffuseIT 44.03 52.92 46.56 0.6922 0.7259 0.6970 0.0254 0.0252 0.0250
InST 31.84 46.13 30.69 0.1760 0.1864 0.1815 0.0390 0.0326 0.0383
OSASIS(Ours) 33.06 41.66 30.46 0.7191 0.7520 0.7303 0.0367 0.0350 0.0345

Low
Density

MTG 36.19 36.52 35.93 0.2228 0.2516 0.2263 0.0608 0.0557 0.0574
MTG+HFGI 36.39 38.02 37.27 0.3730 0.4656 0.4063 0.0386 0.0350 0.0360
JoJoGAN 43.51 45.23 38.49 0.3763 0.3579 0.3319 0.0589 0.00631 0.0605
JoJoGAN+HFGI 40.41 44.74 41.09 0.5145 0.5207 0.4743 0.0411 0.0454 0.0403
DiffuseIT 44.93 53.35 48.18 0.6992 0.7158 0.6994 0.0309 0.0300 0.0310
InST 38.16 50.33 35.86 0.2253 0.2188 0.2238 0.0492 0.0443 0.0488
OSASIS(Ours) 34.89 43.20 33.20 0.6825 0.7323 0.7029 0.0361 0.0295 0.0391

Table 4. Quantitative comparison.
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Figure 14. Stylization result of OSASIS and comparison methods.
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Figure 15. Stylization result of OSASIS and comparison methods with OOD reference images.
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