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In this supplementary material, we provide more details
of our Test-time Adaptation for Event-based Video Frame
Interpolation (TTA-EVF). Specifically, we provide
• Detailed specifications for event-based video frame inter-

polation networks in Section 1;
• More implementation details in Section 2;
• Details about the proposed ERDS dataset in Section 3;
• Additional analysis of the proposed modules in Section 4

and Section 5;
• Additional qualitative results and video demo in Section 6

and Section 7;

1. Specifications of Event-based Video Frame
Interpolation Models

Our framework is a model-agnostic approach, and to
demonstrate this, we adopt recent event-based video frame
interpolation models [2, 4, 7]. Instead of updating all pa-
rameters of the network, we replace some of them with the
proposed norm-residual (NR) blocks, updating only those
parameters. Recent networks are more complex than a
simple encoder-decoder structure, and each network differs
slightly in how NR blocks are integrated. We provide de-
tails on this below.
TimeReplayer [2]. As described in [2], TimeReplayer
consists of three modules as flow estimation, flow refine-
ment, and frame synthesis. Each module is designed as
a U-Net [5] with skip connections, following the previ-
ous work [3]. We replaced the downsample blocks in the
encoder of each U-Net with NR block. As the code for
TimeReplayer is not publicly available, we reimplemented
the method based on the public code of [3], inserting events
to replicate the methodology as closely as possible.
TimeLens [7]. TimeLens consists of four modules:
warping-based interpolation, synthesis, warping refine-
ment, and attention-based averaging. Each module is de-
signed as a U-Net, and we replaced only the downsample
blocks of the U-Net encoder with NR Blocks. As the perfor-
mance reproduction from the official code of Timelens was
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Figure 1. Camera setup for ERDS dataset.

not achieved accurately, we opted to reimplement it from
scratch to ensure that the performance closely matches the
original.
CBMNet [4]. The CBMNet consists of two main modules:
FlowNet and Synthesis. Each of these modules has its own
set of encoders, and we replaced all the resblocks in these
encoders with NR Blocks.

2. More Implementation Details
We implemented the NR Block based on the method de-
scribed in [1], and this block is effective in terms of infer-
ence time despite having a high number of parameters due
to its low computational complexity. In Section 3.3.1 of
the main paper, it is noted that the performance improves
with random sampling of t0 and t1 due to augmentation.
However, to avoid CPU overload in the dataloader, we set
t0 and t1 to 0.5 and 1.5, respectively, for all experiments,
pre-processing the event voxel data for training, instead of
generating new voxels each time.

3. Event-RGB Distribution Shift Dataset
Event cameras need to adapt their bias settings manually or
automatically, depending on the surrounding lighting condi-
tions, to acquire suitable data. For instance, in low-light en-
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vironments, lowering the bias is necessary to increase sen-
sitivity and capture sufficient events, while in high-light en-
vironments, increasing the bias is essential to capture crit-
ical information such as strucutres. From this perspective,
we introduce a new dataset called the Event-RGB Distribu-
tion Shift (ERDS) dataset, where we adapt camera param-
eters for RGB and event cameras based on the surrounding
lighting conditions, continuously shifting the distribution to
acquire data. Test-time adaptation ultimately needs to be
robust in the face of continuously changing distributions.
Therefore, we believe that our dataset is highly suitable for
TTA settings of event-based VFI.

3.1. Camera Configuration

To capture a high-resolution, high dynamic range scene
even in the presence of continuous lighting changes, we use
a hybrid sensor that combines separate RGB and event sen-
sors using a beam splitter, rather than relying on a DAVIS
sensor. As shown in Fig. 1, we adopt FLIR Blackfly S
1440 × 1080 RGB camera and a Prophesee IMX636 (HD)
1280 × 720 event camera. Despite achieving geometric
alignment using a beam splitter to align the two cameras,
there still exists a baseline of less than 1 mm. To address
this, we employ a homography matrix to perform additional
geometric alignment. Both cameras are linked to the micro-
controller through a trigger cable, and the signals generated
by the micro-controller are simultaneously transmitted to
both the event and RGB cameras. Each camera detects the
falling and rising edges of the trigger signals and synchro-
nizes their operations accordingly. Through this external
trigger, we can precisely control the frame rate and expo-
sure time of the RGB camera using synchronized signals.

3.2. Camera Parameter Settings

Gain of RGB camera. If the lighting conditions are too
low or too high, the data provided by the RGB camera
may be insufficient for video frame interpolation. There-
fore, we adjust the Gain value of the Blackfly RGB cam-
era, which amplifies the pixel values, to modify brightness
of the image and ensure that adequate information is cap-
tured. Please refer to the following for more details on
the gain value: http://softwareservices.flir.
com/BFS-U3-123S6/latest/Model/public/
AnalogControl.html
On and Off biases of event camera. We manage the con-
trast sensitivity threshold biases of events by modifying the
values of ’bias diff on’ and ’bias diff off’. ’bias diff on’
and ’bias diff off’ adjust the contrast threshold for posi-
tive and negative events, respectively. Both having lower
values make it more sensitive, resulting in more events,
while higher values have the opposite effect. For a detailed
explanation of this parameter, please refer to the follow-
ing: https://docs.prophesee.ai/stable/hw/
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Figure 2. Visualization of PSNR over time during test-time adap-
tation (from HighREV [6] to BS-ERGB [8]) with and without the
Patch-Mixed Sampling (PMS). The time axis is labeled with the
names of each sequence. The red dotted line indicates the point
where a new sequence is fed into the network.

manuals/biases.html

3.3. Dataset Details

We captured data from a total of 7 sequences, depending on
the environment and settings. Among these, we utilized the
sequence acquired in the typical lighting conditions with the
largest amount of data as the source dataset for pre-training.
The remaining sequences were used for evaluation of test-
time adaptation. Each sequence contains various scenes
with diverse motion and objects. When capturing the scenes
in the same sequence, the camera and the surrounding envi-
ronmental settings were kept consistent. Details about the
sequences are provided in Table 1, while specifics about
each scene within the sequences are presented in Table 2.
Samples from each sequence are provided in Fig. 4.

4. Analysis of Patch-Mixed Sampling
Figure 2 illustrates the PSNR values during the test-time
adaptation process to verify the effectiveness of PMS. In
VFI, online test-time adaptation may lead to issues like
overfitting since the network continues to receive data from
the same scene until a new sequence arrives. Therefore, the
knowledge previously well-learned from the source dataset
may fade, resulting in sub-optimal performance. However,
observing the ‘electric bands 01’ sequence in Fig. 2, the
proposed PMS allows for flexible learning as data from
multiple scenes blended during training, leading to a per-
formance improvement of 0.31 dB at the initial state. If a
sequence is long enough, networks with and without PMS
can achieve relatively similar performance over time. How-
ever, in cases where the sequence length is short, such as
‘horse 11’, the performance difference throughout the se-
quence persists, highlighting the pronounced effect of PMS.

5. Visual Exhibitions for the Reliable Pixels
We present the reliable map, Rt0 generated during the Re-
liable Pixel Sampling (RPS) process in Fig. 3. Figure 3
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Figure 3. Visualization of the reliable map, Rt0 , on the cross-domain experiments. We visualize both the fixed threshold, ρ, approach and
our adaptive threshold approach. The black points indicate unreliability, while the white points indicate reliability. ÎSt0 is the intermediate
frame generated during the self-training process, where ground truth is not available. Red dotted circles indicate areas where artifacts are
predominantly present.

also includes the intermediate frame, ÎSt0 , generated by the
student network, FS . Firstly, it can be observed that the
regions marked as unreliability by all threshold methods
closely match the areas where artifacts are present in the
intermediate generated frame, ÎSt0 .

However, the fixed threshold approach exhibits issues for
different scenes. For example, in the 1st row, where dy-
namic motion is highly present, setting a small ρ, such as
0.01, labels all moving points as unreliable. Conversely, a
higher ρ, as 0.1, aligns well with the actual artifact areas.
In contrast, in the 3rd row, where the scene is less complex
and the generated image has fewer artifacts, a small ρ aligns
well with the error areas, enhancing the stability of the self-
training process. On the other hand, a high ρ accumulates
errors and uses error area for training. The 2nd row rep-
resents a scenario level between the 1st and 3rd rows. In
contrast to these fixed threshold methods, our approach, be-
ing adaptive to the scene and particularly based on motion
magnitude, demonstrates effective matching with actual ar-
tifact regions, regardless of scene complexity. Therefore,
this leads to effective and stable self-training and superior
performance.

6. Additional Qualitative Results
Due to space constraints in the main paper, we provide ad-
ditional qualitative results in the supplementary material.

Cross-domain Datasets: Please refer to Fig. 5 and Fig. 6.
Continuous Domain Shifts: Please refer to Fig. 7.

7. Video Demos
To better demonstrate the effectiveness of our method, we
provide a video demo file, ‘3095 supp.mp4’. Pausing at
intervals for inspection allows for a more thorough exami-
nation of the improved results.
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Table 1. Overview of the proposed ERDS dataset.

Sequence Name No.
Frames

Illuminance
(lux)

Gain Off
Bias

On
Bias

Description

Source Sequence (for pre-train)

General Scene 2,392 50 10 0 0 Typical indoor lighting conditions and corresponding camera settings

Target Sequences (for test-time adaptation)

Sequence 1 1,196 50 10 -20 -20 Typical indoor lighting conditions and increased sensitivity of event cameras
Sequence 2 1,495 10 25 -20 -20 Low-light conditions and increased sensitivity of both RGB and event cameras
Sequecne 3 1,495 5 30 -35 -35 Extreme low-light conditions and increased sensitivity of both RGB and event cameras
Sequence 4 1,495 10 25 -35 -35 Extreme low-light conditions and increased sensitivity of both RGB and event cameras
Sequence 5 1,495 30 15 -35 -35 Typical indoor lighting conditions and highly increased sensitivity of event cameras
Sequence 6 897 150 10 60 60 High-light conditions and reduction in the sensitivity of both RGB and event cameras

Table 2. Details about the scene for each sequence in the ERDS dataset.

Seq. Name Scene Name FPS Description

General Scene

Soccer Ball 1 75 Moving the soccer ball slowly up and down in the xy plane
Outerwear 1 75 Shaking a flexible and non-rigid outer garment in the xy plane
Umbrella 1 75 Spinning the umbrella around the z-axis

Checkerboard 1 75 Moving the checkerboard dynamically in the xy plane
Rod 1 85 Rotating the long rod-like object around the z-axis

Checkerboard 2 75 Rotating the checkerboard slowly along the x-axis
Checkerboard 3 108 Rotating the checkerboard rapidly along the x-axis

Umbrella 2 84 Swinging the umbrella up and down

Target Sequences 1

Soccer Ball 2 108 Moving the soccer ball rapidly up and down in the xy plane
Umbrella 3 108 Moving the umbrella in the z-axis direction

Rod 2 78 Repetitively moving the rod-like object in a rowing motion in the xy plane
Outerwear 2 75 Shaking a flexible and non-rigid outer garment in the xy plane

Target Sequences 2

Umbrella 4 75 Spinning the umbrella around the z-axis
Checkerboard 4 75 Moving the checkerboard dynamically in the xy plane
Soccer Ball 3 75 Moving the soccer ball rapidly up and down in the xy plane

Rod 3 75 Rotating the long rod-like object around the z-axis
Outerwear 3 75 Shaking a flexible and non-rigid outer garment in the xy plane

Target Sequences 3

Umbrella 5 75 Spinning the umbrella around the z-axis
Checkerboard 5 75 Moving the checkerboard dynamically in the xy plane
Soccer Ball 4 75 Moving the soccer ball slowly up and down in the xy plane

Rod 4 75 Rotating the long rod-like object around the z-axis
Outerwear 4 75 Shaking a flexible and non-rigid outer garment in the xy plane

Target Sequences 4

Umbrella 6 75 Spinning the umbrella around the z-axis
Checkerboard 6 75 Moving the checkerboard dynamically in the xy plane
Soccer Ball 5 75 Moving the soccer ball dynamically in the xy plane

Rod 5 75 Repetitively moving the rod-like object in a rowing motion in the xy plane
Outerwear 5 75 Shaking a flexible and non-rigid outer garment in the xy plane

Target Sequences 5

Soccer Ball 6 75 Moving the soccer ball rapidly up and down in the xy plane
Umbrella 7 75 Spinning the umbrella rapidly around the z-axis

Checkerboard 7 75 Rotating the checkerboard dynamically in the xy plane
Rod 6 75 Rotating the long rod-like object rapidly around the z-axis

Outerwear 6 75 Shaking a flexible and non-rigid outer garment in the xy plane

Target Sequences 6
Soccer Ball 7 75 Moving the soccer ball along the x-axis direction
Umbrella 8 75 Spinning the umbrella around the z-axis

Checkerboard 8 75 Dynamic movements in the xy plane while rotating the checkerboard around the z-axis
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Figure 4. The samples of ERDS dataset. The ERDS dataset includes RGB and event data adjusted with light conditions. Therefore, each
sequence contains data with different distributions.
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Figure 5. Visual results on the cross-domain datasets (from HighREV [6] to BS-ERGB [8]).
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Figure 6. Visual results on the cross-domain datasets (from BS-ERGB [8]) to HighREV [6].
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Figure 7. Visual results on the ERDS dataset with continuous domain shifting settings. For Seq. 3, the lighting was too low, so brightness
of cropped image is post-processed for better visualization.
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