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7. Additional details

7.1. Uniform and Gaussian kernel on Mean-shift

We denote a uniform kernel and a Gaussian kernel as 'u

and 'g , formulated as follows:

'u(x) =

(
1 if x 6 �

0 if x > �
(10)

'g(x) = e
� x

2�2 (11)

where � indicates a distance threshold and � indicates a
standard deviation for determining the bandwidth of the ker-
nel. In these way, the conventional mean-shift defines the
neighborhood kernels with a fixed radius from the query
data point where an arbitrary number of neighborhood data
points can be included in N . In contrast, our method sets no
limit on the kernel radius yet always exploits a fixed number
of neighborhood data points, which is realized with kNN
search. For a fair comparison, we adopt cosine similarity
for a distance metric same as our method by reformulating
the Eqs. 10 and 11 as follows:

m(vi) =

P
vj2N (vi)

'(cos(vj ,vi))vjP
vj2N (vi)

'(cos(vj ,vi))
(12)

'u(x) =

(
1 if x > �

0 if x < �
(13)

'g(x) = e
� 1�x

2�2 (14)

where cos(·) refers to cosine similarity.

Implementation details. We replace kNNs with distance-
based NNs with the following implementation details. We
empirically set � = 0.9, � = 0.1, and limit the maximum
number of retrieved embeddings to 1000 to prevent includ-
ing too many points within the neighborhood. During eval-
uation, we modify the inference process by replacing the
fixed kNN search with the uniform or Gaussian kernel as
well. For a fair comparison, all the other hyperparamters
remain the same as ours.

7.2. Details on benchmarks

Table 9 shows the number of labeled and unlabeled classes
of each benchmark. In Table 10, we also denote the size of
training data used for kNN retrieval.

known classes unknown classes

CIFAR100 [28] 80 20
ImageNet100 [39] 50 50
CUB-200-2011 [49] 100 100
Stanford-Cars [27] 98 98
FGVC-Aircraft [35] 50 50
Herbarium19 [45] 341 342

Table 9. Number of known and unknown classes.

ImageNet100 CIFAR100 Stanford Cars CUB

size 127115 50000 8144 5994

Table 10. Size of the kNN search space.

LS
CIFAR100 ImageNet100 CUB Stanford Cars

All Old Novel All Old Novel All Old Novel All Old Novel

z 80.1 86.0 68.2 84.6 95.5 79.1 65.9 82.4 62.6 40.1 62.4 29.4
v 82.3 85.7 75.5 84.7 95.6 79.2 68.2 76.5 64.0 56.9 76.1 47.6

Table 11. Ablation study on different embeddings on LS. The
symbol z denotes mean-shifted vector, and v denotes the feature
extracted from the backbone.

8. Additional experimental results

8.1. Design choices on supervised loss.

In Table 11, we replace the input of LS with the mean-
shifted embedding z as the same as in LCMS. The use of
mean-shift in the supervised loss even harms the perfor-
mance especially on fine-grained benchmarks. Since CMS
learning is designed to incorporate the neighborhood col-
laboration of the query, integrating unlabeled (thus noisy)
kNNs with the supervised loss turns out to be unreliable.

8.2. Effect of the number of nearest neighbors k

In Table 12, we examine the effect of the number of near-
est neighbor k by varying the value with 4, 8, 16, 32, and
64. The result shows that retrieving 8NNs shows reason-
able performance overall. The higher k value tends to more
negatively affect on smaller-scale benchmarks such as CUB
and Stanford Cars since more unrelated NNs are included
due to the smaller size of the search space as outlined in Ta-
ble 10. This also aligns with the experiment on section 7.1,
in the sense that the different number of nearest neighbors
can be interpreted as adopting a different bandwidth of a
kernel. In other words, a large number of k leads to a sim-
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k

CIFAR100 ImageNet100

All Old Novel All Old Novel

4 81.7 85.4 74.3 83.2 95.5 77.0
8 82.3 85.7 75.5 84.7 95.6 79.2

16 80.4 86.5 68.1 83.7 95.6 77.7
32 79.4 86.6 65.1 83.1 95.7 76.7
64 77.1 84.8 61.7 83.8 95.7 77.8

k

Stanford Cars CUB

All Old Novel All Old Novel

4 66.2 73.6 62.5 48.7 70.7 38.1
8 68.2 76.5 64.0 56.9 76.1 47.6

16 64.0 74.8 58.5 50.5 71.5 40.3
32 58.9 75.6 50.5 50.6 72.7 39.9
64 49.4 61.9 43.1 45.1 72.2 32.0

Table 12. Ablation study with varying numbers of nearest neigh-
bors k.

↵

ImageNet100 CUB

All Old Novel All Old Novel

0.5 84.7 95.6 79.2 68.2 76.5 64.0

0.6 83.4 95.7 77.3 63.7 74.3 58.4
0.7 83.5 95.7 77.4 64.3 75.7 58.6
0.8 82.4 95.7 75.6 62.7 73.8 57.2
1/(k+1) 82.1 93.9 76.2 58.7 68.4 53.9

Table 13. Ablation study on different choice of scaling hyperpa-
rameter ↵ in Eq. 6

ilar outcome of using a larger kernel during the mean-shift
clustering, which might over-smooth the embedding space.
This indicates that retrieving an appropriate number of k is
essential for stable learning.

8.3. Effect of the scaling hyperparameter ↵

We investigate the effect of the scale parameter ↵ in Ta-
ble 13. As ↵ increases, kNN embeddings are assigned
higher weights, which can be interpreted as increasing the
uniformity of the mean-shift kernel. Unlike conventional
mean-shift algorithms which are often sensitive to kernel
parameters, our method demonstrates stable performance
across different combinations of queries and kNN embed-
dings. The method tends to show better performance as ↵

decreases, suggesting that approximating a Gaussian kernel
is efficient when well-optimized for the target data distri-
bution. This optimization is facilitated by the kNN-based
kernel, which dynamically adjusts the kernel’s bandwidth.
Through this, we validate that adopting the mean-shift in a
learnable manner leads to a consistent shifting even when
a kernel is approximated to a discrete and non-continuous
format of the kNN retrieval process.

�

ImageNet100 CUB

All Old Novel All Old Novel

0.25 84.7 95.5 79.3 66.8 74.9 62.8
0.35 84.7 95.6 79.2 68.2 76.5 64.0

0.5 84.4 95.9 78.6 65.3 74.4 60.8

Table 14. Ablation study on the weight of supervised contrastive
loss �.

8.4. Effect of varying the weight of supervised con-

trastive loss �

In Table 13, we compare the performance with varying the
weights of the supervised contrastive loss �. The higher the
weight is, the more contribution the labeled images from
known classes in learning. Similar to the ablation stud-
ies on other hyerparameters, the performance is comparable
on ImageNet100, while more sensitive on the fine-grained
benchmark, e.g, CUB. Overall, using larger weight on the
supervised loss tends to deteriorates the performance on un-
known classes.

8.5. Results with a different backbone

We examine the generalizability of our method on differ-
ent backbones by switching from DINO-ViT-B/16 to CLIP-
ViT-B/16 [38]. For a fair comparison, we reproduce Vaze et
al. [48] and PromptCAL [56] using CLIP by fine-tuning
the last layer of CLIP-ViT-B/16 [38] and the projection
head. To match the dimension between the backbone and
the projection head, the input dimension of the projection
head is changed from 768 to 512. All hyperparameters re-
main fixed, except for the learning rate of PromptCAL [56],
which is adjusted from 0.1 to 0.01 for improved perfor-
mance.

Evaluation results on GCD. As shown in Table 15, our
method on GCD task outperforms in most cases by a large
margin. Noticeably, the clustering accuracy measured with-
out the ground-truth number of K shows comparable per-
formance as well.

Evaluation results on inductive GCD. We further compare
the result on inductive GCD setup as well. As shown in
Table 16, our method achieves better accuracy overall, even
without a given number of the ground-truth number K.

Estimated number of clusters. In Table 17, we report
the number of estimated clusters of our method with CLIP
backbone. The reported numbers correspond to the esti-
mated cluster numbers in the experiment shown in Table 15.
This validates the robustness of our method on discovering
and estimating clusters with a different backbone.
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Method Known K

CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel

GCD [48] 3 70.4 79.3 52.6 71.6 86.0 64.6 51.1 56.2 48.6 62.5 73.9 57.0 41.2 43.0 40.2 39.7 58.0 29.9
PromptCAL [56] 3 69.4 77.3 53.5 75.2 87.0 69.3 53.7 61.4 49.9 60.1 77.9 51.5 42.2 48.4 39.0 37.4 50.6 30.3

Ours 3 80.3 85.2 70.6 85.9 93.8 82.0 65.8 75.3 61.1 77.9 89.0 72.6 50.3 59.1 45.9 36.2 56.5 25.3
Ours 78.0 81.2 71.5 84.8 93.8 80.2 65.6 74.0 61.3 77.2 87.3 72.3 50.6 52.8 49.5 38.8 57.7 28.6

Table 15. Comparison of ours and the state of the arts on GCD with CLIP-ViT/B16, evaluated with or without the ground-truth class
number K for clustering.

Method Known K

CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel All Old Novel

PromptCAL [56] 3 79.9 82.7 68.5 - - - 56.0 67.7 44.5 62.3 76.9 48.2 43.6 49.5 37.7 37.6 50.3 30.7
Ours 3 80.7 83.9 68.0 91.0 95.9 86.0 57.9 70.2 45.6 78.2 88.0 68.7 54.1 59.8 48.4 43.0 51.1 34.5

Ours 80.5 84.3 65.2 84.7 95.8 73.6 56.1 64.9 47.4 75.0 87.2 64.2 53.8 59.7 47.9 40.4 51.3 28.9

Table 16. Comparison of ours and the state of the art on Inductive GCD with CLIP-ViT/B16, evaluated with or without the ground-truth
class number K for clustering.

Method
CIFAR100 ImageNet100 CUB Stanford Cars FGVC Aircraft Herbarium 19

GT Pred Err(%) GT Pred Err(%) GT Pred Err(%) GT Pred Err(%) GT Pred Err(%) GT Pred Err(%)

Ours 100 94 6 100 103 3 200 193 3.5 196 189 3.6 100 77 23 683 443 35

Table 17. Estimated cluster numbers K and the error rates on the GCD task with CLIP-ViT/B16.

Query !NN retrieved images
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Figure 4. kNN retrieved images of the initial embedding v and mean-shift embedding z on CUB-200-2011. Green denotes the correct
class and red an incorrect class.

9. Qualitative results

9.1. Qualitative results of the retrieved images.

In Figure 4, we present kNN retrieval results of our model
after 1 iteration during inference. The rows denoted as ‘Ini-

3



(a) DINO [5] (b) Ours

Figure 5. tSNE [33] visualization on ImageNet100. Each Color
indicates a ground-truth class.

tial’ refer to retrieval results using a feature extracted from
a trained image encoder as a query. The rows denoted as
‘Mean-Shift’ indicate using a one-step mean-shift feature
as a query. The retrieved words are ordered by their simi-
larity scores starting from the top left. We can observe that
applying the mean-shift on learned features enhances the
grouping of the instances belonging to the same class, re-
sulting in their retrieval at a higher rank than before.

9.2. tSNE visualization of the embedding space

In Figure 5, we visualize the embedding space of Ima-
geNet100 before and after training. We observe that our
method constructs clearer boundaries between clusters. No-
tably, the confusing classes are scattered around the cen-
ter of the plots on the embedding space of DINO, where
our method effectively clusters the confusing classes clearer
than the DINO baseline once training converged.
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