Exploiting Style Latent Flows for Generalizing Deepfake Video Detection
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The supplementary details provide specific explanations
about the settings that were not fully described in the main
paper, including various configuration values. Additionally,
we present supplementary information that covers experi-
mental results and visualizations which could not be in-
cluded in the paper due to space limitations. As a result,
we provide additional support to the validity of the results
presented in our original paper.

1. More Implementation Details

We employed two preprocessing methods to detect and crop
faces in the videos. First, we use RetinaFace [5] to detect
and align the faces for each video. We use landmarks to
determine the average face region and then use that region
to crop the faces. Each clip consists of 32 cropped faces
resized to 224 x 224 and is used as input for the 3D CNN in
Stage 2.

All experiments were conducted using four Nvidia
A6000 48GB GPUs and an AMD Ryzen Threadripper PRO
3955WX 16-Cores CPU.

1.1. Stage 1

In Stage 1, we perform preprocessing to prepare the input
for the pre-trained pSp encoder. We align and crop the faces
using dlib[10]. These face images are resized to 256 x256.

We use the total loss L in training StyleGRU, where A
sets to 1.

L= Ltri + )\Lclsa (1)
1.2. Stage 2

We conduct data augmentation through the cutout. When
applying the cutout, n square regions are randomly se-
lected, ranging in size from 20% to 80% of the total im-
age area. These cutout regions are applied uniformly to all
frames within the clip. We employed the same 3D CNN
architecture and Temporal Transformer Encoder structure
as FTCN [21]. For cross-dataset experiments, we utilized
the pretrain weights provided by the existing FTCN model
to facilitate effective learning. During this process, we em-
ployed the SGD optimizer with momentum and trained with
a learning rate of Se-7.

*corresponding author

2. Additional Experiments
2.1. Style Latent modeling

Latent CDF FSh
coarse 88.1 98.5
middle 87.8 98.5
fine 88.1 98.7
total (Ours) | 89.0 99.0

Table 1. Style Latent ablation study.

According to [4], training with specific latents is effec-
tive for deepfake detection. To test this argument for our
model, we divide the extracted total style latent (18x512)
into coarse (3x512), middle (4x512), and fine (11x512)
segments, following the suggestion of StyleGAN[9], and
conduct separate experiments on each segment. To evalu-
ate our model’s generalization performance, we train it on
the FF++ [15] dataset and then conduct performance evalu-
ations on the CDF [12] and FSh [11] datasets.

Our model’s ablation study performance undergoes as-
sessment through the presentation of AUC scores (%) on
the coarse, middle, fine, and total style latent vectors. In Ta-
ble 1, we can observe that utilizing all latent variables ulti-
mately demonstrates higher generalization performance.

Metric CDF Fsh
No differencing 884 984
2nd-order differencing 88.8 98.8
Ours(1st-order differencing) | 89.0  99.0

Table 2. Flow modeling metric comparison experiment.

As presented in Table 2, it reveals that the Style-
GRU achieves superior performance when utilizing a met-
ric based on first-order differencing, compared to other
approaches such as neglecting differencing or employing
second-order differencing. Nonetheless, the small perfor-
mance gaps suggest that the GRU layer lets the style feature
independent of the metric.

Condition CDF FSh
Self-supervised 88.5 98.4
Supervised (Ours) | 89.0 99.0

Table 3. Contrastive learning ablation study.



Method Clean | Saturation Contrast Block Noise Blur Pixel Compress | Avg
Xception [2] 99.8 99.3 98.6 99.7 538 602 742 62.1 78.3
CNN-agu [19] 99.8 99.3 99.1 952 547 765 912 72.5 84.1
Patch-based [1] 99.9 84.3 74.2 99.2 500 544 56.7 534 67.5
CNN-GRU [16] 99.9 99.0 98.8 979 479 715 865 74.5 82.3
FTCN* [21] 99.5 98.0 93.7 90.1 53.8 950 9438 83.7 87.0
AltFreezing* [20] | 99.8 99.4 98.9 91.8 609 983 9738 89.9 91.0
Ours 99.6 99.2 95.8 922 550 973 973 86.3 90.4

Table 4. Robustness to Perturbations. We evaluate the average performance change based on the video-level AUC scores when applying
distortions at five different degradation levels. The asterisk(*) denotes that we have reproduced the results using officially provided weights.
The perturbation follows the approach provided by DeeperForensics [8].

2.2. Contrastive learning comparison

Training the StyleGRU in Stage 1 applies a supervised con-
trastive learning manner using anchor, positive and nega-
tive samples with given labels. On the other hand, for repre-
sentation learning, self-supervised contrasitive learning ap-
proaches without providing labels are often employed. We
compared the performance difference between our super-
vised contrastive learning and a self-supervised contrastive
learning approach in which clips extracted from the same
video as the anchor clip were used as positive clips, and
clips from different videos were used as negative clips,
without using label. We conduct an ablation study on the
representation learning methodology. We train on the FF++
dataset and verify performance through video-level AUC
scores on the CDF and FSh datasets.

Table 3 illustrates that when employing supervised con-
trastive learning, it exhibits superior generalization perfor-
mance compared to models utilizing self-supervised con-
trastive learning, thereby showcasing the efficacy of our ap-
proach.

2.3. More about Perturbation Robustness

We conduct a comparison study of the robustness of our
proposed model to perturbations, which was not adequately
presented in the main paper due to space constraints. As
Table 4 illustrates, it demonstrates suboptimal performance
for a specific perturbation. Specifically, performance is vul-
nerable to ¢ Noise ’ type perturbations, which is attributed
to the relatively sensitive response of the pSp encoder [14]
to noise. However, it exhibits a high level of performance
compared to the majority of methods, and there is potential
for improvement through future model enhancements.

Method | raw ¢23  c40
FTCN | 99.5 99.0 70.2
Ours 99.6 99.1 718

Table 5. Experiment on low-quality images.

As shown in Table 5, we performed an experiment to
verify if our algorithm generalizes well to low-quality sam-

ples even when trained on high-quality ones. In the results,
it can be observed that our method exhibits relatively robust
performance against low-quality samples.

Method CDF DFD KoDF | Avg
FTCN 869 944 694 | 83.6
Altfreezing | 89.0 937 69.8 | 84.2
Ours 89.0 96.1 71.1 | 854

Table 6. Generalization to distinct datasets from training data.
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Figure 1. Visualization about Style Latent variance. The x-axis
represents the levels of style latent vectors for detailed style rep-
resentations.The plot above visualizes the results for the FF++
dataset, which we primarily used as the Train dataset, and the plot
below presents the visualization results for the DFDC dataset.

3. Visualization
3.1. More about style latent variance

We provide additional explanations regarding the motiva-
tion behind the variance in style latent and conduct exper-
iments on different datasets in our paper. We utilized the
style latent vectors with differencing from the first clip of
each video in the dataset. To examine temporal changes, we
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Figure 2. Qualitative comparison with SAM score. The dis-
played frames are extracted from correctly classified synthesis
videos in the CDF dataset, with each frame taken at intervals of
6 frames within a single clip.

computed the variance and visualized it as a means of sta-
tistical analysis.

According to the results in Figure 1, a noticeable dis-
tinction between real and fake videos is evident in both the
FF++ [15] and DFDC[6] datasets. The DF [3], FS [13], and
DFDC datasets, which involve the identity swap method,
exhibit differences in a manner similar to what was ob-
served in the visualizations of DFD [7] and CDF [12]. On
the other hand, the F2F [17] and NT [18] datasets, which in-
volve the expression swap method, show reduced variance
due to the fixed identity throughout the manipulation.

3.2. Qualitative comparison with SAM score

In Figure 2, a qualitative evaluation is carried out for the
SAM scores. Figure 2(a) illustrates frames extracted from
fake clips with notable SAM scores. When considering
classification based on low-level temporal cues, it becomes
challenging to classify clips demonstrating slow movement.
The SAM proposed in our work generates high responses
for clips containing slow movement, actively utilizing high-
level temporal cues. On the other hand, as shown in Fig-
ure 2(b), for clips with significant motion, it is observed that
low responses are generated to focus on low-level temporal
cues. This result suggests that the style latent vector flow
proposed in this study can be used as a complementary fea-
ture to the conventional image-based temporal artifact.
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