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1. Implementation Details

For geometry reconstruction in Section 3.1, the model structure of geometry model f,q¢ consists of the grid feature and
shallow MLPs. Following the BakedSDF paper, color model g..;,, adopts the appearance model of Ref-NeRF [12]. For mip-
NeRF 360 dataset and Tanks & Temples, we set 0.01 to a weight for eikonal regularizaiton except for room scene. We use
0.1 for eikonal regularization for the room scene and two scenes from Deep Blending dataset [3]. For modeling appearance,
we build on training techniques from mip-NeRF 360 [ 1] except for integrated positional encoding. We set the distortion loss
weight to 0.002. Our learning schedule is 20k iterations of optimization using Adam [6], a learning rate is annealed from le-3
to le-4 To design the model structure, we adopted the appearance and density model of NeRF2Mesh [ 1] because this model
has a lightweight structure and can generate diffuse texture and specular features. We use multiresolution hash encoding [&]
with hash table size 216, coarsest resolution of 16, highest resolution of 4096, 16 levels and a number of feature dimension
per entry of 2. To effectively train the specular model, we apply L1 regularization on the specular color with a weight set
to le-5. In Section 3.2, for extracting the clean mesh, we employ the visibility and free-space culling techniques introduced
by BakedSDF [14]. After Section 3.3, to export the texture, we first apply xatlas [15] to obtain per-vertex UV mapping.
Subsequently, we can calculate diffuse color and specular features using f.;, after the procedures outlined in Section 3.3.
All these color maps and features are 3-channel .png files, which are lightweight compared to the large feature maps used in
neural texture. For real-time rendering, we follow the same method presented by previous research [2, 4, | |].The MLP for
converting specular features to color is stored in a .json file. In rendering, a fragment shader incorporates this file to apply
view-dependent effects. For experiments on the mip-NeRF 360 dataset [1], we use three outdoor scenes—bicycle, garden,
and stump—and four indoor scenes—room, counter, kitchen, and bonsai. These scenes include highly reflective surfaces
and thin structures, posing challenges for mesh-based rendering. Additionally, we include playroom and drjohnson from the
deep blending dataset [3], as well as barn and courthouse from the Tanks & Temples dataset [7]. We implement all neural
implicit representations, including Geometry Reconstruction, Appearance Modeling, and Optimization components, using
PyTorch [9].The mesh decimation part is implemented in C++. Furthermore, all experiments are conducted on a V100 GPU.

2. Additional Explanations

To initialize the appearance in Section 3.1, g1, incorporates not only the position and viewing direction but also utilizes
the predicted surface normal and a 256-dimensional geometric feature as input. This 256-dimensional geometric feature and
surface normal are produced by the geometry MLP f.4r. When we modify the vertex position, and deformed vertices end
up in empty space, the geometry MLP becomes incapable of computing a useful geometric feature, thereby impeding the
rendering of accurate colors. Embedding the neural feature for each vertex is an option [ 3]; however, it requires significant
GPU memory, particularly for large unbounded scenes. Thus, we only use the geometry MLP for extracting mesh.

For mesh decimation in Section 3.2, we group the vertices into 8 (2 x 2 x 2) clusters and calculate the quadric error for
each cluster. Subsequently, we employ geometry-aware QSlim for each cluster to perform edge decimation. If the quadric
error for each cluster exceeds a certain threshold, we halt the execution of QSlim.



3. Additional Qualitative Comparisons

In the manuscript, we present mesh reconstruction results exclusively for Bicycle, Garden, Counter, and Room (refer to
Fig. 4 in the manuscript) due to the limited space. We show results for the remaining scenes: Stump, Kitchen, and Bonsai.
We show both the mesh reconstruction and rendering results for these scenes, as shown in Fig. 1 and Fig. 2. Furthermore,
we visualize both the mesh reconstruction and rendering results for Playroom and Dr. Johnson from the Tanks & Temples
dataset, and for Barn and Courthouse from the Deep Blending dataset, as illustrated in Fig. 3 and Fig. 4.

(a) Ours (b) NeRF2Mesh (c) BakedSDF

Figure 1. Qualitative comparison between (a) Ours, (b) NeRF2Mesh [11], and (c) BakedSDF [14]. Our method and NeRF2Mesh show
shading mesh and wireframe mesh extracted without texture, respectively.
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Figure 2. Qualitative comparison between (a) Ours, (b) NeRF2Mesh [11], (c) BakedSDF* [14], and (d) MobileNeRF [2]. The visual
results of BakedSDF* generated in its first stage through volumetric rendering.
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Figure 3. Qualitative comparison between (a) Ours and (b) NeRF2Mesh [11]. Our method and NeRF2Mesh show shading mesh and
wireframe mesh extracted without texture, respectively.
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Figure 4. Qualitative comparison between (a) Ours, (b) NeRF2Mesh [11], and (c) MobileNeRF [2].



Figure 5. Comparison of mesh quality when optimized with decimation (columns 1, 3) vs. without decimation (columns 2; 4).

PSNR Garden Bicycle Stump CDJ] Ours NeRF2Mesh BakedSDF*
with Decimation ~ 23.5 224 23.7 garden 0.01/0.13 1.04/086  -/0.12
w/o Decimation 24.1 22.8 242 bicycle 0.02/0.15 1.28/0.90 -/0.11

(@) Decimation Ablation (b) Geometry Evaluation

Table 1. (a) Rendering quality improves w/o decimation, but the resulting mesh suffers from distortions (see Figl) (b) Chamfer distance (CD) with respect
to two baselines - BakedSDF* (from SDFStudio) / MVS. Our scores are significantly better than NeRF2Mesh and only slightly worse than BakedSDF*.

4. Role of Decimation and Ablation

We demonstrate the effectiveness of mesh decimation within our pipeline. In Fig. 5, We visualize the mesh results obtained
using our method both with and without mesh decimation. Except for aggressive mesh decimation, we adhere to the same
pipeline as our method (without decimation). We utilize a naive QSlim approach, employing a 50 percent mesh decimation,
as training large mesh vertices is restricted by GPU memory during differentiable rendering. Training vertex deformation
with a large number of vertices shows more geometric details (bicycle wheel and stump trunk in Fig. 5). This detailed
geometry enhances rendering quality. However, vertex deformation can result in bumpy and noisy surfaces, particularly in
smooth regions (as depicted in the ground regions in Fig. 5). We provide the ablation comparing the visual quality with and
without the decimation step in Tablel-(a). In this Table, optimization with a larger number of vertices demonstrates superior
rendering quality due to its more detailed geometry. However, it requires significant disk storage and presents noisy surfaces
across most regions.

Since the Mip-NeRF 360 dataset does not provide the ground truth meshes, conducting quantitative geometric evaluations
proves challenging. Hence, we reconstruct the two baseline meshes using two different methods. First, BakedSDF* can
generate smooth and highly detailed geometry with a large number of vertices, which we consider as the ground truth mesh.
Second, we employ multiview stereo [10] and eliminate noisy points using a statistical point removal method. We then utilize
screened Poisson surface reconstruction [5] to generate the mesh, which we regard as the ground truth mesh. In Table 1-(b),
we show the Chamfer distance with respect to two baselines (BakedSDF* / MVS). Our scores outperform NeRF2Mesh
significantly and are only marginally lower than those of BakedSDF*. While this evaluation may lack precision, these
comparisons offer quantitative insights that align with the qualitative trends observed in Figure 4 of the manuscript.

5. Thorough Discussion of Limitations

In this section, we provide a more thorough discussion of limitations. First, we can design more sophisticated appearance
model for representing diffuse color and view-dependency effects. BakeSDF adopts a spherical Gaussians to represent view-
depdency effects. Our method utilizes a shallow MLP with a lightweight specular feature map and does not incorporate
any embedding representation for the viewing direction. A more meticulous design of the appearance model can result in
improved rendering quality. Second, training vertex deformation using the ADAM optimizer often results in mesh distortions
including self-intersections and flipped triangles (as seen in Fig. 5). While rotation-invariant ADAM (RADAM mitigates
mesh distortion to some extent, we still observe similar distortion in the mesh. Currently, the ADAM optimizer stands as
the optimal choice available to us. In the future, it is imperative to develop careful optimizer to mitigate mesh distortion,
or alternatively, necessitate the incorporation of robust regularization techniques to facilitate the generation of high-quality



manifold meshes.
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