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Supplementary Material

A. Additional implementation Details

A.1. Self-Supervised Depth Loss

Our method generalizes well to unseen scenes, either with
GT depth for supervision or with self-supervised depth reg-
ularization. As detailed in Section 4.2 of our main paper, we
ensure the accuracy of D1:K even when GT depths are un-
available through applying a self-supervised loss function
Lssl [1, 3, 7] to regularize our depth predictions. By focus-
ing on the cross-view depth consistency among all source
views, we are able to regularize our depth predictions ef-
fectively. This loss function (Eq. 7 in our main paper) is
defined as:

Lssl = λ1LRC + λ2LSSIM + λ3LSmooth, (1)

where LRC calculates the mean square error between a
source image Ik and the reconstructed image I ′k obtained
by warping other source images using their predicted depth
maps for all source images I1:K . LSSIM measures the
structural similarity between I ′1:K and I1:K , and LSmooth

ensures the smoothness of all depth prediction D1:K by pe-
nalizing large variations in the depth values between neigh-
boring pixels. Following [1], the hyperparameters are set at
λ1 = 1, λ2 = 0.2, and λ3 = 0.0067.

A.2. Target View Depth Estimation

As mentioned in Section 4.2 of our main paper, we esti-
mate target view depth DT from the depth prediction of
each source image D1:K , corresponding source view cam-
era poses ξ1:K and the target view camera pose ξT . To be
more specific, DT is estimated by projecting the pixels of
each depth map into 3D space and then reprojecting them
back to the target view. The pseudo-code of the target view
depth estimation is described in Algorithm 1.

A.3. Masking Unrelated Features for Depth-Guided
Visual Rendering

In Section 4.2.2 of the main paper, we utilize occlusion-
aware masks represented by Mn for volume rendering in
Eq. 11 and M for semantic rendering in Eq. 12. These
masks selectively exclude irrelevant features of points lo-
cated behind object surfaces. It is worth noting that, when
computing the global features fn,0 in Eq. 10 and f0 and in
Eq. 14, the mean and variance are also calculated as masked
mean and variance using Mn and M , respectively, ensuring
the exclusion of unrelated information.

Algorithm 1 Target-View Depth Map Estimation
Input: Depth predictions of each source view D1:K , cam-
era pose of each source view ξ1:K , target camera pose ξT
Data: Image size: (H, W), camera pose of the world coor-
dinate ξw

Output: Target view depth estimation DT

1: A← empty array()
2: for k = 1, ...,K do
3: g← meshgrid(H, W)
4: Project g into the coordinate system defined by ξk
5: Multiply g by the corresponding depth prediction Dk

6: g← Transform(g, ξk, ξw)
7: Append g to the array A
8: end for
9: A← Transform(A, ξw, ξT )

10: Reproject A onto the ξT image plane
11: Z ← the third element (Z-axis) of points A
12: A′← round the first two elements of A to integer values

13: W ← The first two elements of (A′ - A)
14: Weight and normalize Z using weight W
15: Set the depth of target view DT to Z based on the index

of the first two elements of A′

16: return Estimated depth of target view DT

17:
18: /* Function */
19: Transform(point, ξ1, ξ2):
20: return transform point from coordinate ξ1 to ξ2

A.4. Training Strategy for Depth-Guided Volume
Rendering

During the volume rendering process in Section 4.2, we
sample points along the ray based on the estimated target
view depth map DT . However, in the early phase of our
training, such estimation might not be accurate. Therefore,
we employ a mix of uniform and depth-guided sampling,
using half the points for each for the first 125K training
steps and then switching to all depth-guided for the rest
125K steps. This approach stabilizes our volume rendering
process and makes sure that our GSNeRF predicts accurate
colors for each pixel of the target view image.



A.5. More Training Details

Given a set of multi-view images of a scene, we select train-
ing pairs of source view and target view by first randomly
selecting a target view, and sampling K nearby yet sparse
views as source views, following the setting of S-Ray [11]
and NeuRay [12]. We implement our model using Py-
Torch [13] and train it end-to-end on a single RTX3090Ti
GPU with 24G memory. Notably, we did not utilize any
pre-trained weights. The batch size of rays is set to 1024
and our model is trained for 250k steps using Adam opti-
mizer [9] with an initial learning rate of 5e-4 decaying to
1e-5.

A.6. Evaluation Metrics

To evaluate the effectiveness of our method, we examine
both semantic performance and visual quality through var-
ious metrics in Table 2 of our main paper. We measure the
semantic capabilities of our approach using the mean Inter-
section over Union (mIoU), class average pixel accuracy,
and total pixel accuracy. These metrics provide a compre-
hensive evaluation of how accurately our method is able to
recognize and delineate semantic objects within the scene.
For evaluating the visual fidelity of the synthesized images,
we employ peak signal-to-noise ratio (PSNR), the structural
similarity index measure (SSIM) [14], and learned percep-
tual image patch similarity (LPIPS) [16]. These metrics col-
lectively assess the clarity, structural integrity, and percep-
tual resemblance of the rendered images as compared to the
ground truth.

B. Additional Experiments and Analysis
B.1. Analysis of the depth-guided sampling strategy

Sensitivity on the estimated depth guidance While em-
ploying target-view depth estimation as sampling guidance,
our method is not as sensitive as Neuray [12] + semhead
and S-Ray [11] in Table 2, which require GT depth as the
input during inference (e.g., PSNR / mIoU: 31.33 / 58.3
(ours) vs. 25.19 / 55.53 (S-Ray)). This robustness holds
even when GT depth is not observed during training, where
we employ self-supervised depth loss and observe satisfac-
tory results (PSNR/mIoU 31.49/52.21), outperforming S-
Ray (25.13/47.69) and other SOTAs. As suggested, we ad-
ditionally compare our estimated depth with GeoNeRF [16]
for depth rendering, confirming the effectiveness and ro-
bustness of our method (see results listed in Table A1).

Efficiency of our sampling strategies With target-view
depth as sampling guidance, our method converges in 150k
steps during training, faster than S-Ray (250k steps). As
for the rendering efficiency, we present a comparison with
S-Ray in Table A2, both run on the same device of RTX-
3090ti and i7-13700k. Notably, when sampling only 4

points along the rays, our method shows 425% improve-
ments in speed while maintaining superior image and se-
mantic segmentation quality.

accuracy ↑ error ↓
Method GT depth δ < 1.25 δ < 1.252 δ < 1.253 abs rel rmse

GeoNeRF 31.38 61.49 84.29 0.3160 0.7197
Ours 82.98 95.21 98.24 0.1448 0.3594

GeoNeRF ✔ 83.91 97.80 99.74 0.1287 0.3002
Ours ✔ 88.77 98.56 99.84 0.1080 0.2503

Table A1. Quantitative results of our target depth estimation.
We use the metrics defined in [4]. Our method estimates high-
quality target view depth maps reliably, whether or not GT depth
maps are used as supervision, in contrast to [8].

N FPS↑ PSNR↑ mIoU↑
S-Ray 128 0.16 25.13 47.69
Ours 128 0.11 31.49 52.21
Ours 4 0.84 27.80 52.21

Table A2. Rendering a 320x240 image with segmentation map.
N is the sampling points number along a ray. Our approach
achieves superior image quality and segmentation results using
just 4 points, while exhibiting four times faster rendering speed.

B.2. Finetuning on Unseen Scenes

To enhance the completeness of our method, we adopt the
fine-tuning setting in S-Ray [11]. Specifically, we fine-tune
our generalized model for a limited number of steps, 5k
steps, on each unseen scene before evaluation.

Table A3 and Fig. A1 show the quantitative and quan-
titative results of our model finetuning 5k steps on Scan-
Net [2]. We observe that by adopting our designed Se-
mantic Geo-Reasoning and Depth-Guided Visual Render-
ing, our method preserved better rendering quality in the
finetuning setting. We further include .mp4 files of trajec-
tories provided in ScanNet for better visualization. (i.e.,
finetune compare.mp4 shows qualitative comparison
of our method compare with S-Ray [11] under fintuning set-
ting. finetune ours.mp4 shows our results with pre-
dicting depth map and RGB rendering error map.)

B.3. Observations on Different Number of Source
Views

Even though we followed S-Ray and set the number of
source views at 8 in all our experiments, we were intrigued
to explore how varying the number of source views could
influence the performance of the model. Therefore, we con-
duct an experiment with different numbers of source views
on ScanNet, the results of which are presented in Table A4.
In the observation depicted in Table A4, we can see that the



Finetuned Method
GT Depth ScanNet

Train / Test mIoU acc. / class acc. PSNR
S-Ray ✔ / ✔ 92.4 98.2 / 93.8 27.67
Ours ✔ / 93.9 99.1 / 98.4 31.70
S-Ray / 91.6 97.3 / 92.2 27.31
Ours / 93.2 98.2 / 96.8 30.89

Table A3. Results of finetuning on unseen scenes of ScanNet.
Note that methods in the first two rows take GT depth during train-
ing, while S-Ray additionally requires such inputs during testing.
The methods in the last two rows do not have access to GT depth
during training/testing.

S-Ray GSNeRF (Ours) GT

Figure A1. Qualitative results of finetuning on ScanNet. Unlike
our GSNeRF, S-Ray fails to capture the semantic contour of the
door (in red) at the upper-left corner.

utilization of extra source view images is associated with
improvements in both visual and semantic segmentation
quality. The improvement is more pronounced in the se-
mantic segmentation quality as the number of source views
increases. This characteristic motivates our future work to
explore the design of a novel view semantic segmentation
framework that operates more effectively with fewer input
views.

K mIoU acc. class acc. PSNR

4 48.70 72.71 57.97 31.02
6 51.61 73.92 59.45 30.96
8 58.30 79.79 65.93 31.33

Table A4. Comparisons of different numbers of source-view
images on ScanNet We show the quantitative results of our
method, given K = 4, 6, or 8 input views. The testing scene is
not seen during training (i.e., the generalized setting).

B.4. Compare with GeoNeRF + semhead

In Section 5.2.1, we mentioned that GeoNeRF + semhead
with depth supervision (second row of Table 2) slightly out-
performs our approach (fourth row of Table 2) regarding
PSNR and SSIM for the rendered RGB images on Scan-
Net, while our GSNeRF excels in all semantic segmentation

GeoNeRF + semhead GSNeRF (Ours) GT

Figure A2. Qualitative comparisons with GeoNeRF with sem-
head on ScanNet. While the difference between the visual quality
of rendering images (in the first row) is not remarkable, improved
semantic segmentation can be observed for our GSNeRF (in the
second row).

metrics by approximately 5%. To further show the advan-
tage of our GSNeRF, we conduct a qualitative comparison
in Fig. A2. Despite observing marginal decreases in image
rendering metrics (PSNR, SSIM) compared to GeoNeRF
+ semhead, the perceptual impact on visual quality is not
obvious. However, a more notable distinction arises in se-
mantic segmentation quality, as GeoNeRF + semhead pro-
duces a pronounced dissimilarity in semantic content with
the ground truth (denoted as GT) in Fig. A2. This suggests
that while GeoNeRF + semhead may marginally outperform
us in image rendering metrics, our method significantly ex-
cels in delivering superior semantic segmentation results.

Image GT Depth est. Depth error Semantic pred. Semantic error

Figure A3. Semantic and depth error map visualization. We
compare the depth map and semantic prediction with GT and show
the error map in binary.

B.5. More Qualitative Evaluation

We show the error map of the depth map and semantic pre-
diction in Fig. A3. Fig. A4 shows more qualitative eval-
uation results. The first three columns of each row illus-
trate the novel view image synthesis results from S-Ray,
our GSNeRF, and the GT image. The latter three columns
present the corresponding novel view semantic segmenta-
tion outcomes for S-Ray, our proposed GSNeRF, and the
GT semantic segmentation map.

B.6. Limitations
Our GSNeRF is proposed for novel-view scene synthesis
and understanding in a generalized setting. Unlike stud-
ies like [5, 6, 10, 15] which synthesize novel-view images



S-Ray GSNeRF (Ours) GT S-Ray GSNeRF (Ours) GT

Figure A4. More qualitative evaluation. We compare the visual quality of the rendered novel view images (the first three columns)
and semantic segmentation maps (the last three columns) with S-Ray [11]. Our method shows clearer image rendering quality and better
semantic segmentation results.

for particular objects like human or faces from a single im-
age, our method utilizes self-supervised loss in Eq. 1 for
observing cross-view depth consistency. Therefore, exten-
sions of our work to single-image generalizable NeRF for
specific 3D objects would be among our future research di-
rections.

References
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