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1. Additional Information on ResNet-50
In this section, we show the tables mentioned by the two dis-

cussion points in the section “Discussion and Conclusion”

of the main manuscript.

Prediction Confidence. In Table 1 we show the pre-

diction confidence on training and validation sets, which

demonstrates the need for softened classification prediction

(T = 2) from the vanilla classification layer to guide the

training of the CAPE model. In practice, we found that a

larger T , e.g., T = 4 will over-soften the vanilla model’s

prediction and reduce the performance of trained CAPE.

Classifier Module CMML CUB ImageNet

T
ra

in

Vanilla classification (T = 1) 98.4 85.8 76.3

Vanilla classification (T = 2) 95.9 45.4 44.7

Bootstrap (PF) 81.9 26.7 43.8

Bootstrap (TS) 88.3 19.7 6.4

V
al

Vanilla classification (T = 1) 96.9 75.7 79.7

Vanilla classification (T = 2) 92.6 33.8 49.3

Bootstrap (PF) 78.5 23.5 46.7

Bootstrap (TS) 84.6 17.7 6.8

Table 1. The empirical mean of the prediction confidence over all

three reported datasets on the ResNet-50 model.

Prediction Agreement. In Table 2, we show predic-

tion agreement between the evaluated models. This demon-

strates that each model’s explanation is unique and cannot

be used to explain each other even if they share the exact

model parameters, i.e., the Off-the-shelf model vs. Vanilla

Classification model.

1.1. Additional Qualitative Figures

Due to the limited space in the main manuscript, we show

the full qualitative examples and comparisons across all

eight state-of-the-art CAM maps in this supplementary ma-

terial. The additional samples are shown in Fig. 2, Fig. 3,

and Fig. 4 for CUB, ImageNet, and CMML respectively, at

†Corresponding author.

Compared models CMML CUB ImageNet

Off-the-shelf Vanilla Classification 90.5 89.0 87.4

Bootstrap (PF) Off-the-shelf 91.9 94.9 93.8

Bootstrap (PF) Vanilla Classification 96.6 89.3 88.1

Bootstrap (PF) Softened Bootstrap (PF) 98.1 99.6 94.6

Bootstrap (PF) Bootstrap (TS) 95.8 92.1 79.8

Bootstrap (TS) Vanilla Classification 97.8 88.5 88.5

Table 2. Prediction agreement (%) between CAPE (TS/PF) and

the Vanilla classification model evaluated on the ResNet-50 model.

Softened Bootstrap (PF) denotes the prediction made by the CAPE

layer with learned T ′ (see Eq. (10) in the main manuscript).

the end of this document. The comparison between CAPE

(PF) and (TS) suggests that (PF) CAPE generally gives a

larger region of attention and accumulatively less softened

class prediction, which is aligned with the observation in

Table 1 (see the rows for Bootstrap (PF) and (TS)). In Fig. 4,

the CAM, Grad-CAM, and Lift-CAM do not yield any at-

tention for the CMML example. This is because these meth-

ods have produced all negative values for the respective

CAM and the rectifier function clipped the values to zero,

hence not showing any attention.

Method
CUB

AD ↓ IC ↑ ADD ↑ ADCC ↑ mIoU ↓ BC ↑
CAM [7] 3.5 49.7 27.7 54.9 96.79 3

Grad-CAM [5] 3.4 50.1 29.2 56.3 96.79 4

Grad-CAM++ [1] 4.2 47.5 26.3 58.4 95.69 0

Layer-CAM [3] 3.5 48.4 28.6 56.4 97.06 2

Score-CAM [6] 6.5 46.1 46.5 78.1 43.95 7

CAPE (PF) 14.3 33.7 22.7 71.4 17.19 4

CAPE (TS) 21.9 22.6 19.6 73.4 21.34 4

μ-CAPE (PF) 4.1 52.7 40.3 55.0 94.25 6

μ-CAPE (TS) 4.2 47.6 37.6 54.0 96.96 1

Table 3. Comparison of different CAM interpretation methods

for CUB using Swin Transformer V2-B as the DNN architecture.

↓ and ↑ indicate lower or higher is better. The top-3 scores are

marked from darker to lighter green colors.
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Method CUB

Naive AVG 86.75

Off-the-shelf 87.15

Bootstrap (TS) 86.83

Bootstrap (PF) 87.14

Vanilla Classifier 87.12

Table 4. Accuracy comparison for Swin Transformer V2-B model

on CUB.

2. Experiments on Swin Transformer Model

We trained the Swin V2-B transformer on CUB. The train-

ing configuration for the CUB dataset is the same as the

ResNet-50 model for the CUB dataset, except the batch size

is set to 16 to cope with the larger GPU memory usage of

the Swin Transformer model. We report the accuracy com-

parison of the Swin Transformer [4], vanilla classification

model, and CAPE methods in Table 4.

2.1. Quantitative Analysis

We compare our method with five state-of-the-art CAM

methods (CAM [7], Layer-CAM [3], Score-CAM [6],

Grad-CAM [5], Grad-CAM++ [1]) on CUB and ImageNet

dataset. Table 3 presents the quantitative analysis using the

same evaluation metrics in the main manuscript.

On CUB, the classification performance of the CAPE

models is very close to the vanilla classifier even without

training, shown in Table 4. In particular, the Off-the-shelf

CAPE and Bootstrap (PF) models (87.15% and 87.12%)

marginally surpass the performance of the vanilla classi-

fier (87.12%). In contrast, the performance gap between

the Vanilla Classifier and Bootstrap (PF) on ResNet-50 was

1.22%, the Vanilla Classifier was better. Finally, the Boot-

strap (TS) resulted in a lower performance of 86.83%, sug-

gesting the full training course is unnecessary.

2.2. Qualitative Analysis

Fig. 1 shows the visualization of different CAM methods

for the Swin V2-B. It is clear that the model attention ex-

amples in Fig. 1 are all widespread. We suspect that this is

due to the fact that the Transformer model tokenizes the im-

age into non-overlapping patches and processes at the patch

level, the spatial correspondence between the original in-

put and the output CAM becomes weak. This means that

all patches in a transformer layer can access information of

all patches in the layer below. With the large model parame-

ters encapsulated in Swin V2-B, all patch tokens likely learn

similar attention pathways, therefore all visualized methods

appear to have widespread attention placed on the input im-

age.

3. CMML Dataset Details

3.1. Data Collection

The investigated Chronic myelomonocytic leukemia

(CMML) dataset (data statistics shown in Table 5 (a)) was

collected from the South Australian Pathology (SA Pathol-

ogy) laboratory using a Cellavision DI-60 scanner from the

period November 2021 to February 2023, in 4 batches. The

blood film staining protocol used a dual Wright’s/Giemsa

0.26% stain solution and Sorensen’s buffer pH 6.8 from

Kinetik. The scanner detected blood cells on individual

images where the cell of interest is centered. We used

the identified monocytes by the scanner as the raw input

images. The produced monocyte images were then squared

or nearly squared in height and width of 352 or 356 pixels,

corresponding to a spatial resolution of 36 × 36μm. The

collected dataset of images was also manually examined

to filter out non-monocytes classified incorrectly by the

scanner and images with multiple monocytes. The process

resulted in 4,067 monocyte images from 171 individuals.

The labels are assigned at the individual level with two

classes: Normal and CMML, determined by individual

medical records. For each individual included in this

study, the number of monocyte images varies from 5 to

171. CMML individuals have on average 46 images vs

17 for normal individuals. The causes of the variations

include: 1) when the WBC count is very low (typically

< 0.5× 109/L), the scanner may have difficulties scanning

sufficient WBCs in a study; 2) normal individuals have

fewer monocytes (< 10% of total WBCs) than CMML

individuals (> 10%); and 3) suspected CMML individuals

were repeatedly scanned. We capped the number of images

per individual to 80 which further reduces the samples used

for training and testing to 3,899.

3.2. Motivation

The CMML dataset depicts a clinically important but dif-

ficult diagnostic problem. In Table 5 (b), we show the re-

sult of a human study on 153 monocyte images (53% are

from CMML individuals) rated by 3 hematologists, where

the performances are largely inconsistent with the recorded

diagnosis from bone marrow biopsy. This suggests that in-

dividual image-level recognition cannot be done reliably.

We first make the assumption that the majority of CMML

individuals will predominantly have abnormal monocytes,

though some monocytes could be normal. Then, all the cap-

tured image instances of an individual inherit the same la-

bel from the individual level, for the purpose of training and

testing. Finally, in the testing phase, the individual’s diag-

nosis is aggregated by averaging the predictions from the

image instances.

From Table 2 in the main manuscript, we show that fit-

ting a vanilla ResNet-50 on this task achieves 90.5% mean



Normal CMML Total

Training set 57 (928) 14 (616) 71 (1544)

Validation set 40 (748) 10 (472) 40 (1220)

Test set 40 (648) 10 (487) 50 (1,135)

Total 137 (2,324) 34 (1,575) 171 (3,899)

BM Diagnosis Observer 1 Observer 2 Observer 3

BM Diagnosis 100.0 59.5 49.7 48.4

Observer 1 59.5 100.0 52.3 65.4

Observer 2 49.7 52.3 100.0 55.6

Observer 3 48.4 65.4 55.6 100.0

(a) Data statistics (b) Human performance & variability

Table 5. (a) Data statistics and (b) Human observer accuracy (%) against the bone marrow (BM) diagnosis and inter-observer agreement.

Semantic
Nucleus

Nuc/Cyto
Cytoplasm

Cyto-Ext Cell Nuc/Cyto/Ext

Class → Boundary Boundary Exterior Boundary

Simplex Definition →
(100, 0, 0) (50, 50, 0) (0, 100, 0) (0, 0, 100) (0, 50, 50) (33, 33, 33)

Method Class

CAPE (TS)

Normal 6.5±8.8 4.6±6.0 5.5±7.0 5.1±5.2 36.8±23.8 1.4±2.4

CMML 11.8±16.3 4.0±5.5 2.6±3.9 2.1±2.9 18.7±17.4 0.9±1.8

CMML-Normal 5.3±22.0 -0.6±10.0 -2.9±9.3 -2.9±7.0 -18.1±37.1 -0.4±3.4

CAPE (PF)

Normal 6.5±7.8 4.0±4.7 4.2±4.3 3.6±3.1 38.4±19.1 1.0±1.6

CMML 5.9±5.9 3.2±3.5 2.8±3.5 2.5±3.0 27.0±19.1 0.9±1.4

CMML-Normal -0.6±12.7 -0.8±7.4 -1.4±6.9 -1.1±5.4 -11.4±36.9 -0.1±2.4

Table 6. The image region contributions (%) to 6 pre-defined semantic classes using the CAPE ResNet-50 model on all test images. For

each method, the 12 (mean) contributions from the Normal/CMML class and the semantic class combinations sum to 100%.

accuracy. With the distribution of approximately 20% indi-

viduals belonging to the CMML category and sampled pro-

portionally in the training, validation, and test sets, this ac-

curacy indicates that the DNN may have found some image

cues that correlate to the CMML diagnosis. The reason for

evaluating the CMML dataset is to visualize what image re-

gions have been used to make the model decisions in order

to provide insights for the hematologists to understand any

morphological/appearance change of CMML in monocytes.

3.3. Analysis and Discussion

CAM methods indicate image regions that matter to the

model outcome but the region is not meaningful unless we

know what is inside the region. To illustrate, in conven-

tional image classification, we can instantly tell whether a

CAM-highlighted region is part of a dog or other objects,

so we can judge whether CAMs make sense. However, for

CMML, we don’t have that prior knowledge, therefore we

first annotated randomly selected 220 images with nucleus

and cytoplasm segmentation by a hematologist. These im-

ages were used to train a Mask R-CNN [2] model to pro-

duce predictions for the entire CMML dataset. With this in-

formation and CAPE-produced probabilistic image region

contribution, we show that we can summarize the CAPE

output of the entire test set to produce a statistical analysis

of attention placement on different region types with seman-

tic meanings: nucleus, cytoplasm, and cell exterior region.

The statistical analysis is shown in Table 6 by summa-

rizing all image predictions (made from the five-fold cross-

validation) for the entire dataset. For each image, we ag-

gregate the image region predictions by horizontal, vertical

flipping, and +/- 90% rotations. Since an image region can

be a square that sits on the boundary of two or more seman-

tic classes, we define six semantic classes shown as the col-

umn titles of Table 6. The definition of simplex for any se-

mantic class is determined by predefined triplet percentages

of (Mask R-CNN) segmentation pixels (Nucleus%, Cyto-

plasm%, Exterior%) compositing an image region. An im-

age region’s probabilistic contribution to the overall model

decision is assigned to the bag of the closest semantic class

determined by the L2 distance between the image region

and the defined semantic class position on the simplex sur-

face. Finally, for each combination of semantic class and

diagnostic class, we compute the mean and standard devia-

tion contribution value of the bag and show that in the cor-

responding cell in Table 6. We further include the statistics

of the CAPE difference between the CMML and Normal

classes. From Table 6, we derive several observations such

as the following.

1. The nucleus region favors the CMML diagnosis more in

the (TS) model but stays mutual in the (PT) model.

2. The cytoplasm region favors the Normal decision more.

3. The Cyto-Ext boundary shows a bias towards the Normal

class.

4. The cell exterior region constitutes the largest decision-

making and is more biased towards the Normal class.

Note that the cell exterior region has the largest image

area and hence potentially can host more attention place-

ment.

5. The rest of the boundaries have relatively less area and

do not show a significant bias to either class and hence

contribute insignificantly to the overall decision.



Original CAM Grad-CAM++ Score-CAM CAPE (PF) μ-CAPE (PF)

Frigatebird 95.9% 95.9% 95.9% 60.2% 60.2%

C
U

B

Pigeon

Guillemot

100.0% 100.0% 100.0% 93.5% 93.5%

Sayornis 85.1% 85.1% 85.1% 43.1% 43.1%

Figure 1. Qualitative analysis for the CUB dataset using the Swin V2-B model. The class confidence scores are shown under the respective

explanation maps, where CAM, Grad-CAM++, and Score-CAM visualize for the original classification model. CAPE and μ-CAPE

visualize for the post-fitted (PF) CAPE classification layer. Note that the shown values pre-upsampling values where we omit values

< 0.5% for CAPE and μ-CAPE and < 5% for the other CAMs.

6. The nucleus and cell exterior are the two semantic re-

gions that have the largest standard deviations, meaning

they are frequently used to decide the CMML diagnosis.

Therefore, through these observations, one potential re-

search direction is to look into the more fine-grained nu-

cleus morphology analysis and another to examine the po-

tential of red blood cell morphology analysis for CMML.

3.4. Dataset Availability

The ethical approval and data sharing agreement of the

CMML research does not cover the public release of the

image dataset. Hence the dataset will not be made publicly

available.
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Original CAM Grad-CAM G-CAM++ SG-CAM++ CAPE (PF) μ-CAPE (PF)

Frigatebird

99.3% 99.3% 99.3% 99.3% 41.3% 41.3%

Layer-CAM FD-CAM Lift-CAM Score-CAM CAPE (TS) μ-CAPE (TS)

99.3% 99.3% 99.3% 99.3% 31.1% 31.1%

CAM Grad-CAM G-CAM++ SG-CAM++ CAPE (PF) μ-CAPE (PF)

Palm Warbler

92.6% 92.6% 92.6% 92.6% 26.7% 26.7%

Layer-CAM FD-CAM Lift-CAM Score-CAM CAPE (TS) μ-CAPE (TS)

92.6% 92.6% 92.6% 92.6% 25.2% 25.2%

CAM Grad-CAM G-CAM++ SG-CAM++ CAPE (PF) μ-CAPE (PF)

Anna
Hummingbird

54.7% 54.7% 54.7% 54.7% 21.9% 21.9%

Layer-CAM FD-CAM Lift-CAM Score-CAM CAPE (TS) μ-CAPE (TS)

54.7% 54.7% 54.7% 54.7% 15.6% 15.6%

Figure 2. Qualitative visualization using the ResNet-50 backbone model for CUB dataset. The class confidence scores are shown under

the respective explanation maps. “G-CAM++” and “SG-CAM++” denote Grad-CAM++ and Smooth Grad-CAM++ respectively.



Original CAM Grad-CAM G-CAM++ SG-CAM++ CAPE (PF) μ-CAPE (PF)

German
Shepherd

73.9% 73.9% 73.9% 73.9% 32.9% 32.9%

Layer-CAM FD-CAM Lift-CAM Score-CAM CAPE (TS) μ-CAPE (TS)

73.9% 73.9% 73.9% 73.9% 1.07% 1.07%

CAM Grad-CAM G-CAM++ SG-CAM++ CAPE (PF) μ-CAPE (PF)

Hen

97.3% 97.3% 97.3% 97.3% 63.0% 63.0%

Layer-CAM FD-CAM Lift-CAM Score-CAM CAPE (TS) μ-CAPE (TS)

97.3% 97.3% 97.3% 97.3% 3.26% 3.26%

CAM Grad-CAM G-CAM++ SG-CAM++ CAPE (PF) μ-CAPE (PF)

Goldfish

99.9% 99.9% 99.9% 99.9% 68.1% 68.1%

Layer-CAM FD-CAM Lift-CAM Score-CAM CAPE (TS) μ-CAPE (TS)

99.9% 99.9% 99.9% 99.9% 6.98% 6.98%

Figure 3. Qualitative visualization using the ResNet-50 backbone model for Imagenet. “G-CAM++” and “SG-CAM++” denote Grad-

CAM++ and Smooth Grad-CAM++ respectively.



Original CAM Grad-CAM G-CAM++ SG-CAM++ CAPE (PF) μ-CAPE (PF)

Normal:99.9% Normal:99.9% Normal:99.9% Normal:99.9% Normal:76.6% Normal:76.6%

Layer-CAM FD-CAM Lift-CAM Score-CAM CAPE (TS) μ-CAPE (TS)

GT: Normal

Normal:99.9% Normal:99.9% Normal:99.9% Normal:99.9% Normal:84.6% Normal:84.6%

CAM Grad-CAM G-CAM++ SG-CAM++ CAPE (PF) μ-CAPE (PF)

CMML:0.1% CMML:0.1% CMML:0.1% CMML:0.1% CMML:23.4% CMML:23.4%

Layer-CAM FD-CAM Lift-CAM Score-CAM CAPE (TS) μ-CAPE (TS)

CMML:0.1% CMML:0.1% CMML:0.1% CMML:0.1% CMML:15.4% CMML:15.4%

CAM Grad-CAM G-CAM++ SG-CAM++ CAPE (PF) μ-CAPE (PF)

Normal:0.0% Normal:0.0% Normal:0.0% Normal:0.0% Normal:1.2% Normal:1.2%

Layer-CAM FD-CAM Lift-CAM Score-CAM CAPE (TS) μ-CAPE (TS)

GT: CMML

Normal:0.0% Normal:0.0% Normal:0.0% Normal:0.0% Normal:0.2% Normal:0.2%

CAM Grad-CAM G-CAM++ SG-CAM++ CAPE (PF) μ-CAPE (PF)

CMML:100.0% CMML:100.0% CMML:100.0% CMML:100.0% CMML:98.8% CMML:98.8%

Layer-CAM FD-CAM Lift-CAM Score-CAM CAPE (TS) μ-CAPE (TS)

CMML:100.0% CMML:100.0% CMML:100.0% CMML:100.0% CMML:99.9% CMML:99.9%

Figure 4. Qualitative visualization using the ResNet-50 backbone for one Normal example (top) and one CMML example (bottom).


