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Appendix

In this appendix we provide additional information on
the following:
A More Details on TANGO++
B Problem Motivation Revisited
C Other Baseline Approaches
D Implementation Details
E More Experimental Analysis
F Dataset Details
G User Study Details
H Inspiration from Conditional Image Generation
I Related Audio Concepts

A. More Details on TANGO++
Our modified baseline model TANGO++ comprises an
early-fusion approach, where we align the visual and the
textual modalities through an Image-Text Contrastive (ITC)
loss. As the generated music is conditioned on both modal-
ities, bringing them to a common latent space is imper-
ative to the success of the system. The text input is
passed through the FLAN-T5 text encoder which we keep
as frozen. For image encoding we use ViT [10]. We project
the visual and the textual inputs to a common embedding
space and align them using ITC loss. The diffusion model
is conditioned on this hybrid embedding to produce audio
signals. It is then converted into spectrograms using the de-
coder and then passed through a HiFi GAN vocoder to pro-
duce the music signal. The expression for ITC loss (LITC)
is as follows:
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where ⟨·, ·⟩ denotes inner product, and τ is the tempera-

ture parameter. zI and zT refer to the image and text latent
representations respectively.

B. Problem Motivation Revisited

Figure 1. A mock-up of a social media post that contains an image
and associated textual content. Our approach MELFUSION, can
consume such image-textual pairs as input and synthesize music
that can go well with them.

Social media platforms have become ubiquitous and pro-
vide a channel for everyone to express their creativity and
share their happenings with the world. It is very common
for users to upload an image, and write an associated text
with it (Fig. 1). Adding music to these social media posts
enhances its visibility and appeal. Instead of retrieving mu-
sic from an existing database, our approach MELFUSION,



will be able to generate music tracks that are custom-made,
conditioned on the uploaded image and its description. We
note that ours is the first approach that operates in this prag-
matic setting, to generate music conditioned on both visual
and textual modality.

C. Other Baseline Approaches

In addition to our proposed baseline approach, we com-
pare MELFUSION against the following methods. Note
that these are text-to-music generation methods unlike our
approach and don’t support multi-conditioning in input
prompts. Hence a direct comparison might not be entirely
fair. In most cases these methods don’t support introducing
an additional modality conditioning as a result we compare
our approach against these baselines directly to study the
benefits of MELFUSION.

Riffusion [11] base their algorithm on fine-tuning a Sta-
ble Diffusion model [42] on mel spectrograms of music
pieces from a paired music-text dataset. This is one of the
first text-to-music generation methods. Mubert [35] is an
API-based service that employs a Transformer backbone.
The encoded prompt is used to match the music tags and
the one with the highest similarity is used to query the audio
generation API. It operates over a relatively smaller set as
it produces a combination of audio from a predefined col-
lection. MusicLM [1] generates high-fidelity music from
text descriptions by casting the process of conditional mu-
sic generation as a hierarchical sequence-to-sequence mod-
eling task. They leverage the audio-embedding network of
MuLan [17] to extract the representation of the target audio
sequence. Moûsai [46] is a cascading two-stage latent diffu-
sion model that is equipped to produce long-duration high-
quality stereo music. It achieves this by employing a spe-
cially designed U-Net facilitating a high compression rate.
Noise2Music [18] introduced a series of diffusion models,
a generator, and a cascader model. The former generates
an intermediate representation conditioned on text, while
the later can produce audio conditioned on the intermediate
representation of the text. MeLoDy [26] pursues an LM-
guided diffusion model by reducing the forward pass bottle-
neck and applies a novel dual-path diffusion mode. Music-
Gen [8] comprises a single-stage transformer LM together
with efficient token interleaving patterns. This eliminates
the need for hierarchical upsampling.

D. Implementation Details

Our text-to-music LDM contains 3 encoder blocks and 3
decoder blocks, similar to Ghosal et al. [13]. Empirically
we find that finetuning from its pre-trained checkpoint helps
convergence. FLAN-T5 [7] is used as the text encoder.
MELFUSION is trained for 30 epochs using AdamW op-
timizer [33]. We attach our visual synapse only on the de-

coder layers of the LDM. Similar to earlier works [13, 27],
we find that using classifier-free guidance improves the re-
sult. Our training takes 42 hours on 4 NVIDIA A100 GPUs.

E. More Experimental Analysis

E.1. Choice of Text-to-Image Diffusion Model

Model MusicCaps MeLBench

FD ↓ KL ↓ FAD ↓ FD ↓ KL ↓ FAD ↓
Stable Diffusion V1.2 1.84 1.52 22.88 1.49 1.14 21.44
Stable Diffusion V1.3 1.62 1.29 22.72 1.34 1.03 21.02
Stable Diffusion V1.4 1.31 1.13 22.67 1.20 0.91 20.53
Stable DiffusionV1.5 1.12 0.89 22.65 1.05 0.72 20.49

Table 1. MELFUSION with different versions of Stable Diffusion.

We study the effect of employing different variants of the
text-to-image Stable Diffusion model (V1.2 through V1.5)
in Tab. 1. We note that the best results are obtained with the
latest variant. This brings to light that our proposed visual
synapse is able to cascade the usage of better text-to-image
models into improving the quality of music generation. The
Stable Diffusion V1.4 and V1.5 checkpoints were initial-
ized with the weights of the Stable Diffusion V1.2 check-
point and subsequently fine-tuned on 225k steps at resolu-
tion 512 × 512 on the LAION dataset and 10% dropping
of the text-conditioning to improve classifier-free guidance
sampling.

E.2. Performance with Different Text Encoders

Model MusicCaps MeLBench

FAD ↓ KL ↓ FD ↓ FAD ↓ KL ↓ FD ↓
BERT [9] 2.82 2.23 24.73 2.91 1.94 22.13

RoBERTa [31] 2.35 2.02 24.09 2.17 1.87 21.95
T5-Small [40] 1.98 1.79 23.68 1.89 1.66 21.23

T0 [45] 1.42 1.25 22.96 1.32 1.19 20.76
CLIPText 1.24 0.94 22.78 1.16 0.91 20.58

FLAN-T5 [7] 1.12 0.89 22.65 1.05 0.72 20.49

Table 2. Performance of MELFUSION with different text encoders

In Tab. 2 we compare the performance of MELFUSION
under different text encoders. We note that the best re-
sults are achieved when an instruction-tuned text encoder is
employed (FLAN-T5 [7]) over other non-instruction-based
models, which correlates with the findings in Ghosal et al.
[13]. This is very closely followed by the ClipText [39] en-
coder.



E.3. Variation Across Genres

Genre name Objective metrics Subjective metrics

FD ↓ KL ↓ FADVGG ↓ IMSM ↑ OVL ↑ REL ↑
Pop 22.47 0.78 1.21 0.95 86.31 90.10

Rock 21.11 0.95 0.85 0.81 88.41 84.92
Hip-Hop/Rap 19.73 0.65 1.24 0.69 83.05 88.78

Electronic Dance Music 20.03 1.06 0.93 0.72 85.39 86.18
Country 19.56 0.89 0.88 0.98 89.94 87.22

Table 3. A study on the diversity analysis of MELFUSION. We
evaluate the performance of our model on generating musical
tracks of five different genres on MeLBench.

Tab 3 reports the performance of MELFUSION across the 5
most popular genres (chosen through a study undertaken by
[16]) on the genre-wise test set collected from MeLBench.
We find a steady performance of our approach across dif-
ferent genres substantiating the ability of the model to cap-
ture the musical nuances like the composition of the in-
struments, track progression, sequence of instruments in-
troduced, rhythm, tonality, tempo, and beats. Due to the
highly subjective nature of the problem, we also perform a
human evaluation by subject matter experts. To this end, we
employ 7 individuals formally trained in music to indepen-
dently listen and report OVL and REL scores considering
the aforementioned aspects to assess the quality of genre-
wise samples. We report the mean OVL and REL values
from all the evaluators on a subset of the corresponding
genre-wise test splits. We find that the overall performance
of our method is highly encouraging as reported in Tab 3.

E.4. Ablating choice of layers

When we fuse subset of Decoder Blocks, we see drop in
performance in Tab. 4, as coupling becomes weak. We
also ablate encoder and decoder layer separately (refer to
Tab. 2 of main paper). Learned α values for each blocks
(0.37, 0.59 and 0.63 respectively) improves over α=0.5 on
all metrics, thus avoiding an extra hyper-parameter to tune.
With a few layers to account for dimension mismatch, vi-
sual synapse can scale to different architectures and avoid
layer-to-layer correspondence. We will explore this in a fu-
ture work.

Decoder Block Extended MusicCaps MeLBench

FAD ↓ KL ↓ FD ↓ FAD ↓ KL ↓ FD ↓
1 1.79 1.12 22.97 1.71 1.02 21.20

1,2 1.53 1.05 22.76 1.27 0.86 20.93
1,2,3 1.12 0.89 22.65 1.05 0.72 20.49

Table 4. Ablation of different decoder blocks

E.5. On conditioning image

MELFUSION generates music from
complementary information from text and image modal-

OVL Range Reasons

0-25
Discordant sound, unpleasant, poor quality, mismatched genre, not cohesive,
repetitive melody, distractive background noise, unpleasant timbre, lack of contrast.

26-50
Unappealing instrumentation, lack of emotional resonance, unusual degree of dissonance,
complex narrative, unrelatable theme, abrupt transition, unbalanced sound levels.

51-75
Inconsistent mood, uninteresting chord progression, uneven transition between sections,
has a nostalgic appeal, cinematic quality, spirituality.

76-100
Exudes calmness, cohesive, pleasing sequence of notes, well balanced combinations,
engaging rhythmic pattern, evoke a sense of groove, nice arrangement of instruments,
strong sense of expression, authentic, vibrant texture, catchy, intuitive and natural flow.

Table 6. Subjective analysis on generated samples

ities. While selecting images randomly, we have lower
FAD/KL/FD scores of 6.38/1.73/26.45 and 8.33/1.57/28.64
on the extended MusicCaps and MeLBench datasets respec-
tively, as it gets conditioned on random image semantics.
We see similar trend in the baselines too, and MELFUSION
still outperforms them. Retrieving or generating image
from conditioning text, will also have similar effect due to
semantic similarity in both conditioning domains.

E.6. Alternate visual conditioning

We compare alternate conditioning from ViT features and
ControlNet here. The semantics contained in these repre-
sentations are inferior to those from text-to-image models
(similar to findings in [54]). Further, our visual synapse
effectively adapts them by learning to modulate the repre-
sentations, specific to music synthesis. Moreover compared
to the generalist model (that consumes multiple modalities)
in AudioLDM2 [28], our specialist synaptic model gener-
ates better music. Also, their feature concatenation strategy
is inferior to our visual synapse, as evident from Tab. 5.

Model Extended MusicCaps MeLBench

FAD ↓ KL ↓ FD ↓ FAD ↓ KL ↓ FD ↓
CLIP ViT Feats [39] 1.83 1.15 23.03 1.77 1.04 21.48

Control Net [56] 1.65 1.09 22.94 1.25 0.85 20.91
AudioLDM2 [28] 1.77 1.13 22.96 1.74 1.02 21.42

Ours 1.12 0.89 22.65 1.05 0.72 20.49

Table 5. Comparison against different visual conditioning

E.7. Subjective analysis

We complement our OVL scores with subjective descrip-
tions, where we ask the evaluators to justify the score, strat-
ify them based on OVL scores, and report the most frequent
reasons in Tab. 6.

E.8. Learnable versus Fixed α Parameters

Fusion parameter α
Extended MusicCaps MeLBench

FAD ↓ KL ↓ IMSM ↑ FAD ↓ KL ↓ IMSM ↑
α = 0 3.07 1.21 - 3.11 1.19 -

α = 0.10 2.98 1.17 0.51 3.03 1.07 0.56
α = 0.50 1.17 0.93 0.71 1.12 0.79 0.77
α = 0.90 4.96 1.38 0.85 4.11 1.29 0.89
α = 1.0 5.62 1.54 - 4.16 1.37 -

Learnable α 1.12 0.89 0.76 1.05 0.72 0.83

Table 7. Analyzing the effect of having fixed versus learnable α.



We study the impact when α is kept frozen as compared to
being learnable here. The first five entries in Tab. 7 denote
the cases where the value of α is unaltered during training
and kept constant at 0, 0.10, 0.50, 0.90, and 1.0 respectively.
Experimental results demonstrate that a learnable value of
α produces significantly better results as compared to the
fixed counterpart, as the model has the flexibility to learn
them to effectively balance between both the conditioning
modalities.

F. Dataset Details

F.1. MeLBench Statistics

Type of image # Pieces Percentage (%) in Dataset

Natural image 3206 28
Animation 2404 21

Poster 2748 24
Painting / Sketch 3092 27

Table 9. Image categories in MeLBench.

Tab. 9 presents the distribution of the image samples in
MeLBench. To maintain a fair balance across different dis-
tributions we collect samples from 4 different categories:
natural images, animations, posters, paintings/sketches.
This ensures that MELFUSION is trained with ample ex-
amples from each of these classes and is equipped to tackle
images from any of these very frequent and popular classes
better. MeLBench comprises 11,250 samples which is ∼ 2x
larger than the next largest dataset MusicCaps [1].

Fig. 2 presents the frequency of the top 90 words in MeL-
Bench. The annotators were asked to write free-form text
descriptions of the musical pieces with an emphasis on the
musicality of the samples. We observe that the annotation
contains important cues about the nature of the audio track
(e.g., ‘live performance’, ‘chaotic’, ‘forceful vocals’, etc).
These can supplement a model with useful pieces of infor-
mation regarding the aesthetics of the composition.

F.2. Dataset Hierarchy and Samples

Tab. 8 contains the genre and sub-genre-wise division of
the samples collected in MeLBench. We categorise the col-
lected musical samples into 15 broad categories with each
of them having 22 sub-genres to facilitate fine-grained con-
trol over the composition through the image (theme) and
text-instructions (details on musicality). The samples are
divided across different genres roughly equally to maintain
a good balance.

Fig. 3 presents one sample from each of the remaining
13 categories (Electronic and Folk Acoustic present in the
main paper). As can be seen from the examples, the cap-

tions are of varied lengths and the images are from different
distributions (natural images, animation, paintings, etc.).

F.3. Extended MusicCaps Data Collection

MusicCaps [1] is a music caption dataset comprising mu-
sic clips from AudioSet [12] paired with corresponding text
descriptions in English. The collection consists of a total of
5,521 examples, out of which 2,858 are from the AudioSet
eval and 2,663 are from the AudioSet train split. The au-
thors further tag 1,000 samples as a balanced subset of the
dataset - equally divided across genres. All examples in the
balanced subset are from the AudioSet eval split. As our
setup is not restricted to text and requires joint conditioning
in the form of images as well, we supplement this dataset by
collecting 2 carefully chosen image frames for each of the
10-second samples from the corresponding YouTube video
or web. As some of the samples are not live anymore, we
were able to collect a total of 7,684 samples which we di-
vided into a 60%/20%/20% split for train/validation/test re-
spectively.

G. User Study Details
Fig. 4 presents the user study interface. To obtain the OVL
and REL scores, we provide the participants with an image-
text pair and the audio sample generated by MELFUSION.
For the overall audio quality score (OVL) the participants
are instructed to add their score between [1,10] while for the
relevance score (REL), they are required to rate the sample
based on its similarity with the input image-text pairs.

In Fig. 5 we compare our method against prior text-to-
music methods and report the OVL and REL scores in the
main paper (Tab. 1). In this case, the participants were
presented with only the text-music pairs.

Fig. 6 shows the user study interface for the IMSM score.
For this, the participants were presented with image-music
pairs and asked to provide their rating between [1,10], with
1 being the lowest. The higher the score, the more perceptu-
ally similar the participant has found the image-music pair
to be.

H. Inspiration from Conditional Image Gener-
ation

Powered by architectural improvements and the availabil-
ity of large-scale, high-quality paired training data, condi-
tional image generation methods have made considerable
progress in the generative AI space. Promising results from
transformer-based auto-regressive approaches [41, 55] were
boosted by diffusion model-based methods [36, 42, 44].
These approaches have been naturally extended to gener-
ate videos from text prompts too [15, 48, 53]. Latent diffu-
sion models [42] do the diffusion process in the latent space
of a pre-trained VQ-VAE [51]. This significantly reduced



Figure 2. Frequency of top 90 words from MeLBench





Figure 3. Samples from MeLBench.



Genre Subgenre

Hip-Hop Alternative Hip Hop, Rap, Pop Rap, Trap, Melodic Rap, Gangster Rap, Southern Hip Hop, Urban Contemporary, Crunk, German Hip Hop, Rap Conscient, Italian Hip Hop,
East Coast Hip Hop, Hardcore Hip Hop, Atl Hip Hop, Dirty South Rap, Russian Hip Hop, Polish Trap, Underground Hip Hop, Funk Carioca, West Coast Rap, Cloud Rap

Pop Dance Pop, Pov- Indie, Singer-Songwriter Pop, Mexican Pop, J-Pop, Latin Arena Pop, Indie Pop, Modern Country Pop, Art Pop, Alt Z, Indietronica,
New Wave Pop, Spanish Pop, Italian Adult Pop, Electropop, Turkish Pop, Reggae Fusion, Post-Teen Pop, Hip Pop, Ccm, Indonesian Pop, Pop Nacional

Latin Latin Pop, Trap Latino, Urbano Latino, Reggaeton, Musica Mexicana, Rock En Espanol, Norteno, Sierreno,R&B Francais, Reggaeton Colombiano, Sad Sierreno,
Mpb, Sertanejo, Tropical, Latin Alternative, Banda, Corrido, Grupera, Ranchera, Trap Brasileiro, Rap Conciencia, Urbano Espanol

Electronic Edm, Pop Dance, Uk Dance, Electronica, Electro House, House, German Dance, Tropical House, Downtempo, Brostep,
Stutter House, Progressive House, Slap House, Big Room, Chill House, New French Touch, Dancefloor Dnb, Chillhop, Pop Edm, Lo-Fi Beats, Trance, Metropopolis

R&B Soul, Indie Soul, Quiet Storm, Neo Soul, Funk, Alternative R&B, Disco, Pop Soul, Afrobeats, Bedroom R&B, Dark R&B,
Reggae, British Soul, Contemporary R&B, Hi-Nrg, Classic Soul, Uk Contemporary R&B, Motown, New Jack Swing, Gospel, Roots Reggae, Philly Soul

Easy listening Adult Standards, Chanson, Soundtrack, Show Tunes, Hollywood, Movie Tunes, Cartoon, Japanese Soundtrack, Broadway, Deutsch Disney, Swing, British Soundtrack,
Lounge, Preschool Children’s Music, Scorecore, Romantico, Classic Girl Group, Children’s Music, Electro Swing, French Soundtrack, French Movie Tunes, Classic Soundtrack

World / traditional Folkmusik, Modern Bollywood, Filmi, Pop Urbaine, World, Afroswing, Dancehall, World Worship, Entehno, Sufi, Naija Worship, Classic Bollywood,
Nouvelle Chanson Francaise, Modern Reggae, Laiko, Classic Opm, Uk Dancehall, South African Pop Dance, Chutney, Celtic, Manila Sound, Azontobeats

Jazz Vocal Jazz, Bossa Nova, Dinner Jazz, Contemporary Post-Bop, Jazz Fusion, Nu Jazz, Background Jazz, Smooth Jazz, Jazz Funk, Contemporary Vocal Jazz, Jazz Piano,
Jazztronica, Hard Bop, Smooth Saxophone, Cool Jazz, Nz Reggae, Soul Jazz, Torch Song, Folclore Salteno, Indie Jazz, Contemporary Jazz, Brazilian Jazz

Rock Permanent Wave, Modern Rock, Classic Rock, Mellow Gold, Album Rock, Soft Rock, Pop Rock, Alternative Rock, Hard Rock,
Folk Rock, New Wave, New Romantic, Indie Rock, Heartland Rock, Latin Rock, Art Rock, Blues Rock, Dance Rock, Country Rock, Alternative Dance, Pop Punk, Punk

Classical Orchestral Soundtrack, Compositional Ambient, Classical Performance, Javanese Dangdut, Italian orchestra, Orchestral Performance, Neo-Classical, Orchestra, Classical Piano, British Orchestra, Choral,
Opera, Indian Classical, Hungarian Classical, Epicore, Impressionism, Chamber Orchestra, Historically Informed Performance, Violin, Baroque Ensemble, Symfonicky Orchestra, Japanese Guitar

Blues Electric Blues, Jazz Blues, British Blues, Modern Blues, Malian Blues, Rebel Blues, Acoustic Blues, Rhythm And Blues, Doo-Wop, Traditional Blues, Soul Blues, Louisiana Blues,
Garage Rock Revival, Indie Quebecois, New Orleans Blues, Texas Blues, Country Blues, Australian Garage Punk, Chicago Blues, Delta Blues, Memphis Blues, Slack-Key Guitar

Metal Alternative Metal, Post-Grunge, Nu Metal, Rap Metal, Groove Metal, Power Metal, Melodic Metalcore, Metalcore, Skate Punk
Glam Metal, Thrash Metal, Speed Metal, Death Metal, Funk Metal, Screamo, Nerdcore Brasileiro, Industrial Metal, Comic Metal, Symphonic Metal, Deathcore, Gothic Metal, Progressive Metal,

Country Contemporary Country, Agronejo, Arrocha, Country Road, Sertanejo Universitario, Outlaw Country, Nashville Sound, Pop Rap Brasileiro, Pagode Novo,
Arrochadeira, Forro, Forro De Favela, Funk 150 Bpm, Progressive Bluegrass, Black Americana, Axe, Bandinhas, Funk Ostentacao, Alternative Country, Piseiro, Jam Band, Classic Texas Country

Folk/ acoustic Singer-Songwriter, Neo Mellow, Indie Folk, New Americana, Stomp And Holler, British Singer-Songwriter, Melancholia, Lilith, Turbo Folk, Countrygaze, Neo-Psychedelic,
Pop Folk, Turkish Folk, Ambient Folk, Modern Indie Folk, Rune Folk, Indian Folk, Fantasy, Alternative Americana, Ska Punk, Vbs, German Indie

New age Rain, Color Noise, Sleep, Sound, Healing Hz, Solfeggio Product, Indie Game Soundtrack, Ocean, Environmental, Water, Piano Cover,
Acoustic Guitar Cover, Lullaby, High Vibe, Instrumental Worship, Atmosphere, Background Music, Ambient Worship, Binaural, Brain Waves, Background Piano, Fourth World

Table 8. Genre and sub-genre-wise division of the collected samples. Our dataset encompasses samples from 15 different genres each
further divided into 22 sub-genres

Figure 4. User study interface to collect OVL and REL scores.

the compute requirements when compared with image dif-
fusion methods. Ho and Salimans [14] proposed classifier-
free guidance to enhance image quality. Text-to-music and

Figure 5. User study interface for comparison against prior text-
to-music methods

text-to-audio methods are heavily inspired by the success of
text-to-image generative methods, and so are we.



Figure 6. User study interface to obtain IMSM scores

I. Related Audio Concepts

The Multimodal Variational Auto-encoders (MVAEs) are
latent variable generative models to learn more generaliz-
able representations from diverse modalities through joint
distribution estimation. Arik et al. [2] pioneered a neu-
ral audio synthesis model based on VAEs. Their approach
demonstrated promising results in generating realistic au-
dio samples by learning a latent representation of the audio
data. Inspired by this VAEs have been widely used in the
audio processing domain for speech synthesis [30, 50, 57],
audio generation [4, 13, 22], and audio denoising [3, 43].

Vocoders are used for a variety of purposes across differ-
ent domains due to their ability to manipulate and synthe-
size audio signals efficiently. Among other prominent appli-
cations of vocoder, neural voice cloning [2, 21], voice con-
version [29], and speech-to-speech synthesis [20] are very
popular. GAN-based vocoders [25] have been employed to
generate high-fidelity raw audio conditioned on mel spec-
trogram. More recently, WaveRNN [24] has been applied
for universal vocoding task [23, 32, 38].

Spectrograms are a powerful tool for analyzing time-
varying signals such as audio and speech. They provide
a visual representation of the frequency content of a sig-
nal over time, making them widely used in speech process-
ing [6, 34, 47], music analysis [26, 46], and audio synthe-
sis [5, 13, 19, 27, 52] in general. Audio spectrograms are
also massively deployed in different audio visual applica-

tions [5, 37, 49].
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