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Supplementary Material
In this supplementary material, we provide implementation
details, additional results, ablation studies, and experimen-
tal analysis in support of the findings of the main text. The
structure of this document is as follows:

• Section A: Details on data generation, model imple-
mentation, and training procedure.

• Section B: Additional obstruction removal results with
comparison methods and synthetic validation. Analy-
sis of challenging reconstruction settings.

• Section C: Additional analysis on manipulating model
and training parameters. Includes reconstruction re-
sults for subsampled and short burst sequences.

A. Implementation Details
Data Acquisition To acquire paired obstructed and unob-
structed captures, we construct two tripod-mounted rigs as
illustrated in Fig. 1 (a-b). We begin by capturing a still of
the scene without the obstruction, before rotating the tri-
pod into position to capture a 42-frame obstructed long-
burst [3] of 12-megapixel RAW frames. As the rig is only
used to hold the obstruction – i.e., the smartphone is not
attached to it – it does not affect natural hand motion dur-
ing capture. For accessible natural occluders, such as the
fences in Fig. 3, we acquire reference views by position-
ing the phone at a gap in the occluder – though this some-
times cannot perfectly remove the occluder as in the case of
Fig. 3 Pipes. We collect data with our modified Pani cap-
ture app, illustrated in Fig. 1 (c), built on the Android cam-
era2 API. During capture, we also record metadata such as
camera intrinsics, exposure settings, channel color correc-
tion gains, tonemap curves, and other image processing and
camera information during capture. We stream gyroscope
and accelerometer measurements from on-board sensors as
≈100Hz, though we find accelerometer values to be highly
unreliable for motion on the scale of natural hand tremor,
and so disregard these measurements for this work. We ap-
ply minimal processing to the recorded 10-bit Bayer RAW
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Figure 1. (a) Tripod-mounted occluder setup for capturing paired
occlusion removal data. (b) Tripod-mounted reflector setup for
capturing paired reflection removal data. (c) Capture app interface
with the extended settings menu. (d-e) Example 3D scene with
simulated occluder, camera frustum highlighted in orange.

frames – only correcting for lens shading and BGGR color
channel gains – before splitting them into a 3-plane RGB
color volume. We do not perform any further demosaic-
ing on this volume, as these processes correlate local signal
values, and instead input it directly into our model for scene
fitting. For visualization, we apply the default color correc-
tion matrix and tone-curve supplied in the capture metadata.

Synthetic Data Generation Capturing aligned ground-
truth data for obstruction removal is a long-standing prob-
lem in the field [10], greatly exacerbated by the requirement
in our setting of a sequence of unstabilized frames with its
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base frame aligned to an unobstructed image. Thus, to help
validate our method, we turn to synthetic captures created
through image reprojection. We use 61-megapixel digital
camera (Sony A7RIV) captures to simulate the transmission
layer, and either hand-segmented occluders or a second 61-
megapixel “reflection” image to simulate the obstruction.
These are simulated as 3D planes in space at depths ΠO

z and
ΠT

z respectively – ΠO
z < ΠT

z for occluders and ΠO
z > ΠT

z for
reflectors – and apply a random tilt to the planes with angle
θ ∈ [−20◦, 20◦]. To generate realistic camera motion, we
record samples of natural hand tremor with a pose-capture
application built on the Apple ARKit library [3]. We then
apply this motion path to a projective camera model, re-
sample the image planes, and alpha-composite the outputs
to produce the simulated burst stack. We emphasize that
this data does not capture all the imaging effects present in
real burst photography – e.g., lens distortion, scene defor-
mation, motion blur, chromatic aberrations, or sensor and
microlens defects – and use it as a tool for validating correct
layer separation rather than a benchmark for overall perfor-
mance. Reconstruction results for these simulated bursts are
shown in Fig. 7 and Fig. 8.
Implementation Details While the overarching model
structure is held constant between all applications – iden-
tical projection, image generation, and flow models for all
tasks – elements such as the neural spline field h(u, v) en-
coding parameters paramsγ can be tuned for specific tasks:

h(u, v) = h(γ(u, v; paramsγ); θ)

paramsγ = {Bγ ,Sγ ,Lγ ,Fγ ,Tγ}. (1)

By manipulating the parameters of Eq. 1 as defined in Tab. 1
we construct four different “sizes” of network encodings:
Tiny, Small, Medium, and Large. Image fitting results in
Fig. 2 illustrate what scale of features each of these config-
urations is able to reconstruct, with larger encoding recon-
structing denser and higher-frequency content. Then, as-
sembling together multiple image and flow networks with
varying encoding sizes as defined in Tab. 1, we are able to
leverage this feature scale control for layer separation tasks
such as occlusion, reflection, or shadow removal.

For tasks such as video segmentation, it is important that
both the transmission layer and obstruction layer are able
to represent high-resolution images, as the purpose here is
to divide and compress video content into two canonical
views, alpha matte, and optical flow. Hence for the video
segmentation task in Tab. 1 both layers have Large network
encodings. Conversely, for a task such as shadow removal
we want to minimize the amount of color and alpha infor-
mation the shadow obstruction layer is able to represent – as
shadows, like the mask example in Fig. 2, are comprised of
mostly low-resolution image features. Correspondingly, the
shadow removal task in Tab. 1 has a Tiny image color encod-

base scale levels feat. table
Size Bγ Sγ Lγ Fγ Tγ

Tiny (T) 4 1.61 6 4 12
Small (S) 4 1.61 8 4 14

Medium (M) 4 1.61 12 4 16
Large (L) 4 1.61 16 4 18

Table 1. Multi-resolution hash-table encoding parameters for dif-
ferent “sizes” of network, with larger encodings intended to fit
higher-resolution data. Note that we only vary the number of grid
levels Lγ , and match the backing table size Tγ accordingly to
avoid hash collisions. The base grid resolution Bγ , grid per-level
scale Sγ , and feature encoding size Fγ are kept constant.

occlusion removal:
flow h |h| rgb f fα depth Πz ηαR

Tr: T 11 L 1.0 0.02
Ob: T 11 M M 0.5

reflection removal:
flow h |h| rgb f fα depth Πz ηαR

Tr: T 11 L 1.0 0.0
Ob: T 11 T L 2.5

video segmentation:
flow h |h| rgb f fα depth Πz ηαR

Tr: S 15 L 1.0 0.002
Ob: S 15 L M 2.0

shadow removal:
flow h |h| rgb f fα depth Πz ηαR

Tr: T 11 L 1.0 0.0
Ob: T 11 T M 2.0

dehazing:
flow h |h| rgb f fα depth Πz ηαR

Tr: T 11 L 1.0 0.01
Ob: T 11 T S 0.5

image fusion:
flow h |h| rgb f fα depth Πz ηαR

Tr: S 31 L 1.0 0.0

Table 2. Network encoding, flow, and loss configurations used for
several layer-separation applications, separated into rows individ-
ually defining transmission Tr and obstruction Ob layers. Encod-
ing parameters are defined by the corresponding (T,S,M,L) row
of Tab. 1. Flow size |h| indicates the number of spline control
points used for interpolation of the corresponding neural spline
field S(t, h(u, v)).

ing and only a Medium size alpha encoding. We keep these
parameters constant between all tested scenes for clarity
of presentation, however we emphasize that these model
configurations are not prescriptive; all neural scene fitting
approaches [7] have per-scene optimal parameters. Given
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Figure 2. Image fitting results for network encoding configurations
as described in Tab. 1, other training and network parameters held
constant: 5-layer MLP coordinate networks, hidden dimension 64,
ReLU activations. PSNR/SSIM values inset top-left.

the relatively fast training speed of our approach, approxi-
mately 3mins on a single Nvidia RTX 4090 GPU, in settings
where data acquisition is costly – e.g., scientific imaging
settings such as microscopy – it may even be tractable to
sweep model parameters to optimally reconstruct each indi-
vidual capture.

B. Additional Reconstruction Results
In this section, we provide additional quantitative and qual-
itative obstruction removal results, comparing our proposed
model against a range of multi-view and single-image meth-
ods. We include discussion of challenging imaging settings
and potential directions of future work to address them.
Occlusion Removal We include a set of additional occlu-
sion removal results in Fig. 3 with natural environmental
occluders such as fences and grates. We evaluate our re-
sults against the multi-image learning-based obstruction re-
moval method Liu et al. [6], the NeRF-based method OCC-
NeRF [11], the flow plus homography neural image rep-
resentation NIR [8], and the single image inpainting ap-

proach Lama [9] – to which we provide hand-drawn masks
of the occlusion. We find that, as observed in the main
text, the multi-image methods struggle to remove signifi-
cant parts of the obstruction. Though in some scenes, the
multi-image baselines are able to decrease the opacity of
the occluder to reveal details behind it. Nevertheless, in all
cases the obstruction is still clearly visible after applying
each baseline. Given the small camera baseline setting of
our input data, the volumetric OCC-NeRF approach strug-
gles to converge on a cohesive 3D scene representation,
producing blurred or otherwise inconsistent image recon-
structions – as is the case for the Church scene. We find
that the the homography-based NIR method also struggles
in this small baseline setting, often identifying the entire
scene as the canonical view rather than partly obstructed.
Given hand annotated masks, single image methods such as
DALL·E and Lama [9] can successfully inpaint sparse oc-
cluders such as the fence in the Pipes scene, but struggle to
recover content behind dense occluders such as in Alexan-
der and Church in Fig. 3. As they have no way to aggre-
gate content between frames, they “recover” hidden content
from visual priors on the scene, which may not be reliable
when the scene is severely occluded.

In contrast, our method automatically distills a high-
quality alpha matte for the obstruction and reconstructs the
underlying transmission layer using information from mul-
tiple views. This mask is of similar quality regardless of
whether the scene is obstructed by a dense occluder or a
sparse occluder, so long as there is sufficient parallax be-
tween the two layers. The depth-separation properties of
our alpha estimation are showcased in the River example,
where the obstruction layer isolated not only the grid of the
fence, but also the branches and leaves weaved through the
fence. Our method reconstructs the transmitted layer be-
hind the occlusion with favorable results compared to all
baseline methods.

Reflection Removal For reflection removal, we com-
pare with the reflection-aware NeRF-based method NeR-
FReN [4] in addition to NIR [8], Liu et al. [6], and the
single-image reflection removal method DSRNet [5]. We
show reflection removal results in Fig. 4. We observe results
with a similar trend to those in the obstruction removal task.
The volumetric method NeRFReN struggles to reconstruct
a high-fidelity scene representation, as Liu et al. and NIR
also struggle with the small baseline of the camera motion.
The single-image method DSRNet performs best among the
baselines, as it has no priors on image motion. However,
without the ability to draw information from multiple views,
DSRNet uses learned priors to disambiguate reflected and
transmitted content. This appears not to be very effective
for high opacity reflections, such as the Leaves example and
the phone in the Plaque scene. Our method achieves the
highest-quality reconstruction and layer separation among
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Figure 3. Occlusion removal results and estimated alpha maps for a set of captures with reference views, with comparisons to single image,
multi-view, and NeRF fitting approaches. See video materials for visualization of input data and scene fitting.

all methods tested, across all scenes, with our estimated ob-
struction revealing the detailed structure of the scene being
reflected. In Fig. 6 we also showcase our model’s perfor-
mance on challenging, in-the-wild scenes where we do not
have the ability to acquire reference views. We observe ro-
bust reflection removal, matching the reconstruction quality
observed for scenes acquired with our tripod setup.
Validation on Synthetic Scenes We generate synthetic
scenes as described in Sec. A, and compare our obstruction
removal results to the same baselines outlined in the pre-
vious sections, including: OCC-NeRF [11], NeRFReN [4],
Liu et al. [6], NIR [8], Lama [9] and DSRNet [5]. We show
quantitative and qualitative results for occlusion removal
and reflection removal in Fig. 7 and Fig. 8 respectively. We
also provide NeRF-based methods with ground truth cam-
era poses, which results in higher fidelity NeRF-based re-
construction than on real-world data. Overall, we observe
similar trends to the real-world examples, with most multi-
image based methods failing to remove the majority of the
obstructions for the majority of scenes. This is with the ex-
ception of Liu et al. [6] for the Geese, Vending and Butterfly
scenes in Fig. 7, where it succeeds at removing a large por-
tion of the fence occluders. We believe this is a strong indi-

cation that this method relies heavily on visual cues to iden-
tify the occluder (e.g., gray mostly-in-focus fences), and
helps to explain its failure to identify and remove other cat-
egories of obstructions such as the black hexagonal grids in
Fig. 3. Lama [9], when provided with a ground-truth occlu-
sion mask, is able to reconstruct a relatively coherent trans-
mission layer. However, upon closer inspection the results
are missing details in the ground-truth transmission layer,
such as the distorted text in Sign and missing beak of Pigeon
in Fig. 7. We observe that both multi-image methods and
DSRNet [5] fail to effectively remove reflections in Fig. 8,
with DSRNet [5] accidentally enhancing the reflected con-
tent in the Sealions scene. These observations are supported
by quantitative results, with our method achieving the high-
est PSNR and SSIM across all scenes tested. We observe
an average PSNR increase of more than 10db, with near-
perfect reconstruction of both obstructions and obstructed
content; though emphasize that these results represent a val-
idation of the models in a simplified imaging setting, and
are not fully representative of performance across diverse
in-the-wild scenarios.
Shadow Removal In Fig. 5 we demonstrate shadow re-
moval results for scenes with disparate lighting conditions:
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Figure 4. Reflection removal results and estimated alpha maps for a set of captures with reference views, with comparisons to single image,
multi-view, and NeRF fitting approaches. See video materials for visualization of input data and scene fitting.
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Figure 5. Shadow removal results under different lighting condi-
tions: (a) partially diffuse, (b) multiple point, (c) single point.
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Figure 6. Reflection removal results for challenging in-the-wild
scenes: (a) storefront window, (b) poster, (c) museum painting.
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Occlusion OCC-NeRF Liu et al. NIR Lama Proposed Occlusion OCC-NeRF Liu et al. NIR Lama Proposed

Geese 19.49/0.578 32.24/0.970 20.89/0.696 21.96/0.760 41.80/0.986 Vending 18.05/0.550 15.10/0.754 17.96/0.625 17.42/0.591 39.62/0.981
Pigeon 18.60/0.691 15.17/0.725 18.74/0.691 21.55/0.753 40.33/0.965 Bear 23.72/0.696 26.32/0.930 23.28/0.746 23.84/0.815 40.88/0.980
Sign 24.34/0.870 24.11/0.952 22.84/0.905 28.57/0.932 48.63/0.994 Butterfly 17.67/0.674 15.43/0.828 18.25/0.750 17.89/0.722 39.53/0.980

Figure 7. Qualitative and quantitative occlusion removal results for a set of 3D rendered scenes with paired ground truth. Evaluation
metrics formatted as PSNR/SSIM.
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Waterbird 21.94/0.695 23.68/0.811 24.08/0.751 19.95/0.753 39.16/0.982 Sealion 20.28/0.811 11.45/0.726 22.36/0.899 13.27/0.657 32.31/0.993
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Figure 8. Qualitative and quantitative reflection removal results for a set of 3D rendered scenes with paired ground truth. Evaluation
metrics formatted as PSNR/SSIM.
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Figure 9. Challenging image reconstruction cases including vary-
ing scales of camera motion, overlap between occluder and trans-
mission colors, and residual signal left on scene content in low-
texture regions. Areas of interest highlighted with dashed border.

(a) a book illuminated by a diffuse overhead lamp, (b) a
poster illuminated by an array of LEDs, and (c) a bust illu-
minated by a strong point light source. We note that the grid
of LEDs act as a set of point light sources, producing mul-
tiple copies of the shadow to be overlayed on the scene. In
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Figure 10. Visualization of the effects of gradient loss LG on im-
age reconstruction at 25x zoom. Inset bottom left is the radius of
perturbation at epoch 40 and epoch 100, the end of training.

all settings we are able to extract the shadow with the same
obstruction network defined in the shadow removal appli-
cation in Tab. 2, further reinforcing the our image fitting
findings from Fig. 2. Namely that coordinate networks with
low-resolution multi-resolution hash encodings are able to
effectively fit both scenes comprised of smooth gradients,
as in the diffuse shadow case, and limited numbers of im-
age discontinuities, as in the multiple point source case.
In (c) we furthermore see that while the photographer-cast
shadow is successfully removed from the bust, the shadows
cast by other light sources are left intact. This reinforces
that our proposed model is separating shadows based not
only on their color, but on the motion they exhibit in the
scene; as the other shadows cast on the bust undergo the
same parallax motion as the bust itself.
Challenging Settings We compile a set of challenging
imaging settings in Fig. 9 which highlight areas where our
proposed approach could be improved. One limitation of
our work is that it cannot generate unseen content. While
this means it cannot hallucinate features from unreliable im-
age priors, it also means that it is highly parallax-dependent
for generating accurate reconstructions. This is highlighted
in Fig. 9 (a-c), where with hand motion on the scale of 1cm
is only enough to separate and remove the topmost branch
of the occluding plant. Motion on the scale of 10cm is
enough to remove most of the branches, but larger motion
on the scale of half a meter in diameter causes the recon-
struction to break down. This is likely due to the small
motion and angle assumptions in our camera model, as it
is not able to successfully jointly align the input image data
and learn its multi-layer representation. Thus work on large
motion or wide-angle data for large obstruction removal –
e.g., removing telephone poles blocking the view of a build-
ing – remains an open problem. Fig. 9 (d) demonstrates
the challenge of estimating an accurate alpha matte when
the transmitted and obstructed content are matching colors.



In this case, although the obstruction is “removed”, we see
that the alpha matte is missing a gap around the black object
in the scene behind the occluder. In this region the model
does not need to use the obstruction layer to represent pix-
els that are already black in the transmission layer – in fact,
the alpha regularization term Rα would penalize this. Thus
the alpha matte is actually a produce of both the actual al-
pha of the obstruction and its relative color difference with
what it is occluding. Fig. 9 (e) highlights a related prob-
lem. In regions where the transmission layer is low-texture,
and lacks parallax cues, it is ambiguous what is being ob-
structed and where the border of the obstruction lies. Thus
ghosting artifacts are left behind in areas such as the sky
of the Textureless scene. What is noteworthy, however, is
that these are also exactly the regions in which in-painting
methods such as Lama [9] are most successful, as there are
no complex textures that need to be recovered from incom-
plete data, leaving a hybrid model as an interesting direction
for future work.

C. Additional Experiments and Analysis
Gradient Loss A significant challenge posed by the task
of aggregating long-burst data is the so-called problem of
“regression to the mean”. When minimizing a metric such
as relative mean-square error, which penalizes small color
differences significantly less than large discrepancies, the
final reconstruction is encouraged to be smoother than the
original input data [1]. Thus, in developing our approach we
explored – but ultimately did not use – a form of gradient
penalty loss:

LG = |(∆c− ∆ĉ)/(sg(∆c) + ϵ)|2.

Rather than sample a grid of points around uO, vO and uT, vT

or perform a second pass over the image networks [8] to
compute Jacobians, we compute color gradients ∆c by pair-
ing each ray with an input perturbed in a random direction

∆c = I(u, v, t)− I(ũ, ṽ, t) (2)
ũ, ṽ = u+ rcos(ϕ), v + rsin(ϕ), ϕ ∼ U(0, 2π),

where r determines the magnitude of the perturbation. The
estimated color gradient ∆ĉ is similarly calculated for the
output colors of our model. Illustrated in Fig. 10, by re-
ducing radius r from multi-pixel to sub-pixel perturbations
during training, we are able to improve fine feature recov-
ery in the final reconstruction via gradient loss LG without
significantly impacting training time – as perturbed sam-
ples are also re-used for regular photometric loss calcula-
tion Lp. However, as we do not apply any demosaicing or
post-processing to our input Bayer array data, we find this
loss can also lead to increased color-fringing artifacts – the
red tint in the bottom row of Fig. 10. For these reasons, and

poor convergence in noisy scenes, we did not include this
loss in the final model. However, there may be potentially
interesting avenue of future research into a jointly trained
demosaicing module to robustly estimate real color gradient
directly from quantized and discretized Bayer array values.

Alpha Regularization Ablation In Fig. 12, we visualize
the effects of alpha regularization weight ηα on reconstruc-
tion. The primary function of this regularization is remove
low-parallax content from the obstruction layer, as there is
no alpha penalty for reconstructing the same content via the
transmission layer. As seen in the Pipes example, without
alpha regularization the obstruction layer is able to freely
reconstruct part of the transmitted scene content such as the
sky, the pipes, and the walls of the occluded buildings. A
small penalty of ηα = 0.01 is enough to remove this un-
wanted content from the obstruction layer, while ηα = 0.1
is enough to also start removing parts of the actual obstruc-
tion. Contrastingly, in the case of reflection scenes such
as Pinecones, even a relatively small alpha regularization
weight of ηα = 0.01 removes part of the actual reflec-
tion – leaving behind a grey smudge in the bottom right
corner of the reconstruction. As reflections are typically
partially transparent obstructions, and can occupy a large
area of the scene, removing them purely photometrically
is ill-conditioned. There is no visual difference between a
gray reflector covering the entire view of the camera and
the scene actually being gray. Thus ηα can also be a user-
dependent parameter tuned to the desired “amount” of re-
flection removal.
Frame Count Ablation Thusfar we have used all 42 frames
in each long-burst capture as input to our method, but we
highlight that this is not a requirement of the approach. The
training process can be applied to any number of frames –
within computational limits. In Fig. 11 we showcase recon-
struction results for both subsampled captures, where only
every k-th frame of the image sequence is kept for train-
ing, and shortened captures, where only the first n frames
are retained. Similar to the problem of depth reconstruc-
tion [2], we find that obstruction removal performance di-
rectly depends on the total amount of parallax in the input.
Sampling the first 10 frames – approximately 0.5 seconds
of recording – results in diminished obstruction removal for
both the Digger and Gloves scenes as the obstruction ex-
hibits significantly less motion during the capture. In con-
trast, given a five frame input sampled evenly across the
full two-second capture, our proposed approach is able to
successfully reconstruct and remove the obstruction. This
subsampled scene also trains considerably faster, converg-
ing in only 3 minutes as less frames need to be sampled per
batch – or equivalently more rays can be sampled from each
frame for each iteration. This further validates the benefit of
a long burst capture.
Flow Encoding Size Ablation A key model parameter
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Figure 11. Ablation study on the effects of the number of input frames or duration of capture on transmission layer reconstruction and
estimated alpha matte. Total number of frames input into the model denoted by the number in parentheses– e.g., (10) = ten frames.
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Figure 12. Ablation study on the effects of alpha regularization weight ηα on transmission layer reconstruction and estimated alpha matte.



Flow Encoding: Small Flow Encoding: TinyFlow Encoding: MediumFlow Encoding: Large

Figure 13. Ablation study on the effects of flow encoding size (Tab. 1) on transmission layer reconstruction and estimated alpha matte.

Scene Edited Transmission

Figure 14. Demonstration of user-interactive scene editing facil-
itated by layer separation. Only the user-selected region of the
obstruction, highlighted in red, is removed without affecting sur-
rounding scene content, see text.

which controls layer separation, as discussed in Section A,
is the size of the encoding for our neural spline flow fields.
In Fig. 13 we illustrate the effects on obstruction removal
of over-parameterizing this flow representation. When the
two layers are undergoing simple motion caused by paral-
lax from natural hand tremor, a Tiny flow encoding is able
to represent and pull apart the motion of the reflected and
transmitted content. However, high-resolution neural spline
fields, just like a traditional flow volume h(u, v, t), can
quickly overfit the scene and mix content between layers.
We can see this clearly in the Large flow encoding exam-
ple where the reflected phone, trees, and parked car appear
in both the obstruction alpha matte and transmission image.
Thus it is critical to the success of our method to construct
a task-specific neural spline field representation appropriate
for the expected amount and density of scene motion.

Applications to Scene Editing In Fig. 14 we showcase
the scene editing functionality facilitated by our proposed
methods layer separation. As we estimate an image model
for both the transmission and obstruction, we are not limited

to only removing a layer but can independently manipulate
them. In this example we rasterize both layers to RGBA im-
ages and input them into an image editor. The user is then
able to highlight and delete a portion of the occlusion while
retaining its other content. Thus we can create physically
unrealizable photographs such as only the fence appearing
to be behind the Digger, or selectively remove the photog-
rapher’s hand and parked car from the Hydrant scene.
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