
A. Evaluation methodology for multi-output
regression problem

In this study, our objective is to address the multi-output
regression problem in n distinct spots within a Whole Slide
Image (WSI). We formally define this problem as:

f : X → Y ∈ Rn×m

where X represents the set of n input images, and Y denotes
the expression levels of m genes across these n spots. To
tackle this problem, we employ three evaluation metrics:
the Pearson Correlation Coefficient (PCC), Mean Squared
Error (MSE), and Mean Absolute Error (MAE). Our choice
of these metrics is grounded in their distinct advantages.
Firstly, the PCC offers insights into the linear relationship
between predicted and actual target values, both in strength
and direction. Secondly, the MSE is a robust measure of the
average squared discrepancies between predicted and actual
targets, reflecting the model’s accuracy and sensitivity to er-
rors. Lastly, the MAE provides an interpretable measure
of the average absolute differences between predictions and
actual targets, advantageous for its lower sensitivity to out-
liers compared to MSE.

We assess each model’s performance on a per-slide basis.
For the jth gene, the PCC, MAE, and MSE are calculated
as follows:

PCCj =

∑n
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Here, ŷi,j represents the predicted expression level of the
jth gene in the ith spot, and m and n are numbers of genes
to be predicted and spots in a WSI, respectively. For PCC,
the average value across m number of genes is computed
as:

PCC =
1

m

m∑
j=1

PCCj

When multiple slides are involved in testing, we calcu-
late PCC, MAE, and MSE for each slide using the above
methodology and then report the average values across all
slides.

B. Method Details
B.1. Processing of input data

Target spot image For the extraction of target spot images,
we employ pre-defined center coordinates to obtain images

of dimensions 224x224. Subsequently, these images un-
dergo a normalization process where pixel values are ad-
justed to fall within the range of 0 to 1, prior to their input
into the model. During the training phase, we enhance the
robustness of our model by applying image augmentation
techniques. These techniques encompass random horizon-
tal and vertical flips, and random rotations of the input im-
ages by 90 degrees.
Neighbor view In processing images sized 1,120x1,120, we
commence by segmenting a centrally located 1,120x1,120
patch from the target spot image into 25 uniform sub-
patches, each measuring 224x224. It is important to note
that these sub-patches differ from the 25 spot images near-
est to the target spot, a distinction necessitated by the non-
uniform alignment of center coordinates in ST data and the
observable gaps between spot images, as depicted in Figure
1.

Feature extraction is carried out using a ResNet18 model
that has been pre-trained. The significant dissimilarity
between histology images and conventional image types
presents a challenge, as models trained on datasets like
ImageNet might not be directly suitable for WSI analy-
sis. To address this, we utilize a version of ResNet18 that
has undergone training on an integrated, multi-organ dataset
through self-supervised learning. This training strategy en-
sures the extraction of features that are robust to variations
in staining and resolution, as detailed in [3]. The extracted
features are then employed as inputs for the neighbor en-
coder.
Global view We engage all spot images contained within
a WSI. It’s important to clarify that the aggregation of all
spot images does not represent the full extent of the WSI.
Nonetheless, this comprehensive inclusion of spot images
enables us to effectively map the interconnections between
these images and approximate the spatial information, as
illustrated in Figure 1.

For feature extraction, we apply the same methodology
used in the neighbor view. This involves cropping spot im-
ages to a uniform size of 224x224 and processing them
through the pre-trained ResNet18 model. The features ex-
tracted from this process are then channeled as inputs into
the global encoder for further processes.
Visium data for external test We evaluate our model on
spatial gene expression data from breast cancer tissues,
sourced from 10x Genomics. The datasets employed are
as follows:
• 10X Visium-1: Breast cancer tissue from human (v1),

Spatial Gene Expression Dataset by Space Ranger v1.3.0
(2022, Jul 02).

• 10X Visium-2: Breast cancer tissue from human (v1, Sec-
tion 1), Spatial Gene Expression Dataset by Space Ranger
v1.1.0 (2020, Jun 12).

• 10X Visium-3: Breast cancer tissue from human (v1, Sec-
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tion 2), Spatial Gene Expression Dataset by Space Ranger
v1.1.0 (2020, Jun 12).

This dataset represents an enhancement over the ST data
used in the training phase, providing high-resolution gene
expression profiles with thousands of spots per sample. We
apply consistent pre-processing methods across all Visium
datasets. The model, initially trained on the BC1 dataset,
is subsequently applied to predict 250 genes, initially se-
lected based on their representation in the BC1 dataset. In
cases where any of the 250 genes are not present in a Vi-
sium dataset, we exclude those genes from our evaluation.
This approach leads to the consistent exclusion of 7 genes
across all datasets, a detail we elaborate upon in Figure 6.

B.2. Method details for Target Encoder

As detailed in the Methods section of the main text, the tar-
get encoder embeds target spot images using the pre-trained
ResNet18 model [3]. This model is fine-tuned to specifi-
cally capture fine-grained, target-specific information from
the target spot images. In particular, an image with di-
mensions of 224x224x3 undergoes a transformation into a
7x7x512 feature map after processing through all layers of
the ResNet18 model. The resulting features are then re-
shaped into 49x512 tokens. These tokens are integrated
with other tokens -neighbor and global tokens- to form the
input for the fusion layer. Concurrently, a separate fully
connected layer is linked to the average-pooled token of the
target tokens, facilitating independent gene expression pre-
diction. During the training phase, the weights of the target
encoder are comprehensively updated to enhance the cap-
ture of fine-grained spot information.

B.3. Method details for Neighbor Encoder

The neighbor encoder is designed to embed local informa-
tion surrounding the target spot. It processes features ex-
tracted from 25 images, each of size 224x224, represent-
ing the neighbor view. This approach closely aligns with
the Vision Transformer (ViT) [4] architecture, incorporat-
ing self-attention mechanisms with relative position encod-
ing and fully-connected layers applied to the input tokens.
A key deviation from the standard ViT model is the exclu-
sion of the patch embedding module for 2D images. In-
stead, we directly utilize pre-extracted features as our in-
put values. Details regarding specific hyperparameters and
their settings will be discussed in the forthcoming section,
”Additional Implementation Details and Experimental Re-
sults.” In a manner similar to the target layer, an additional
fully-connected layer is attached to the pooled token of the
neighbor tokens. This layer is also specifically tasked with
the prediction of gene expression.

B.4. Method details for Global Encoder

The global encoder is composed of transformer blocks in-
tegrated with the Atypical Position Encoding Generator
(APEG). The operational flow of APEG is illustrated in Fig-
ure 2.
Implementation of APEG APEG’s process begins with the
rearrangement of spot features based on their relative coor-
dinates. This involves constructing a sparse matrix in the
Coordinate Format (COO) using Pytorch. In this matrix,
indices represent adjusted normalized coordinates, starting
from a minimum value of 0, and feature values correspond
to the non-zero elements of the matrix. This sparse matrix is
subsequently converted into a dense format to facilitate the
application of convolutional layers, after which it is restored
to its original sparse format.

For the global layer, as opposed to employing a pool-
ing operation, the approach involves retrieving tokens that
correspond to each target spot. These tokens are then con-
nected to a fully connected layer, which is tailored to inde-
pendently predict gene expression.

B.5. Method details for Fusion Layer

The fusion layer is specifically designed to integrate infor-
mation from the global token with corresponding neighbor
and target tokens. In this process, the global token actively
exchanges information with all other tokens. However, the
target and neighbor tokens, which collectively form a larger
set of tokens, are structured to avoid direct interaction or
information exchange among themselves. In a more de-
tailed mechanism, for each spot, a global token functions
as the query, while neighbor and target tokens are utilized
as key and value elements. The overall time complexity of
the fusion layer is represented as O(nTa+nNe), where nTa

and nNe denote the numbers of target and neighbor tokens,
respectively. Following this interactive process, the aggre-
gated tokens are processed through a fully connected layer
to yield the final prediction output. This approach is identi-
fied as more computationally efficient than applying atten-
tion mechanisms across the complete set of tokens, which
would result in time complexity of O((nTa + nNe + 1)2).
Furthermore, it has shown superior performance compared
to traditional feature fusion methods, a claim substantiated
by our experimental results.

B.6. Implementation Details for Baselines

This subsection details the implementation nuances of our
baseline models, ensuring a consistent comparison frame-
work with our proposed TRIPLEX model. In preprocessing
the input data for all baseline models, we adhere to the same
steps as outlined in Section 4 in the main text, which are also
employed in TRIPLEX.
ST-Net ST-Net [5] utilizes a DenseNet121 [6] model, pre-
trained on ImageNet, with minimal modifications (only re-
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placing the final output layer) and is fine-tuned on ST data
using transfer learning. Our implementation strictly adheres
to this scheme.
HisToGene and Hist2ST These models employ spot im-
ages of size 112x112, as used in their respective studies
[9, 13]. We maintain their overall architectural framework
while adapting data normalization and image augmentation
techniques to align with our approach. Details on hyperpa-
rameter selection can be found in Section 3.6.
EGN For EGN [12], in addition to following the prepro-
cessing steps of TRIPLEX, we implement the method pro-
posed by [12] to obtain k exemplars for all spots. We replace
the unsupervised SF2GAN-based model from [11] with a
pretrained ResNet18 model used in TRIPLEX. This deci-
sion, informed by the results in [12], ensures a fair compar-
ison by maintaining consistent feature extraction strategies
across models.
BLEEP BLEEP [10] is a bi-modal learning model designed
to co-embed histology images and gene expression levels.
In our implementation, we adhere to the core architecture
of BLEEP, with minor hyperparameter adjustments as de-
tailed in Section 3.6. For inference, BLEEP utilizes the top-
k nearest gene expression levels to predict gene expression
for query spot images. Among the three methods suggested
- ”simple” (using the top 1 value), ”simple average” (av-
eraging the top k values), and ”weighted average” (using a
weighted average of the top k values) - we employ the ”sim-
ple average” approach, specifically using the top-50 nearest
gene expression levels. This choice was based on its supe-
rior performance in our tests. Additionally, we opted not
to use Harmony [8] for batch correction of gene expression
levels, as Harmony is geared towards correcting PCA em-
beddings rather than raw gene expression levels. Given our
dataset’s limited slide range (12 to 68), such batch correc-
tion might inadvertently reduce the training data’s diversity,
thereby increasing the risk of overfitting.
TEM,NEM,GEM We replicate the three derivative models
from TRIPLEX: the Target Encoding Model (TEM), Neigh-
bor Encoding Model (NEM), and Global Encoding Model
(GEM). Each model is specialized to process distinct views:
TEM utilizes the target spot image, NEM focuses on the
neighbor view, and GEM deals with the global view. Their
primary objective is to predict gene expression levels based
on their respective input data. Consistency with TRIPLEX
is maintained in terms of architecture and hyperparameters
for these models.

C. Additional implementation details and ex-
perimental results

C.1. Description of datasets

We evaluate our model on three distinct datasets: BC1
and BC2 (breast cancer datasets) and SCC (a skin cancer

dataset). We focus on the top 250 genes with high gene ex-
pression levels in each dataset as labels for prediction. Fur-
thermore, we calculate the average ranks of well-predicted
genes during cross-validation to identify the top 50 ”highly
predictive genes.” These genes are then used to compute the
PCC (H). For detailed summaries of each dataset and the
specific genes selected, please refer to Figures 3, 4, and 5.

C.2. Implementation Details for Experiments

Our approach is implemented using PyTorch (version
1.13.0) and pytorch-lightning (version 1.8.0), and models
are trained on a Nvidia RTX A5000 GPU. We employ
mixed precision training, utilizing PyTorch native Auto-
matic Mixed Precision (AMP) for efficiency. To ensure re-
producibility, the random seed is consistently set at 2021
across all experiments. The training process is capped at
a maximum of 200 epochs, with an early stopping mecha-
nism triggered if there is no improvement in the PCC(M)
(MSE in case of BLEEP) after 20 epochs.

C.3. Implementation Details for Ablation Studies

We assess the impact of omitting individual components
and comparing the resulting model performance with the
complete TRIPLEX model. Key components of TRIPLEX
include: individual modules (TEM, NEM, GEM), each pre-
dicting gene expression levels using distinct input data; the
Position Encoding Generator (PEG), which infuses posi-
tional information into WSIs; and a fusion strategy designed
to integrate various types of tokens effectively.
Individual Modules In our experimental setup, each mod-
ule (TEM, NEM, GEM) is individually omitted while main-
taining the other components as per the original TRIPLEX
configuration. Notably, in scenarios where the GEM is ex-
cluded, we introduce a dimensionally equivalent, randomly
initialized token in place of the global token. This approach
is necessary because, without GEM, there is no medium for
information exchange in the fusion layer.
Position Encoding Generator (PEG) We evaluate the sig-
nificance of our Atypical PEG (APEG), which is engineered
to encapsulate positional information within a WSI, on the
model’s ability to predict gene expression levels. This eval-
uation involves either removing APEG or substituting it
with a traditional PEG as detailed in [2] and Section 4.4
in the main text.
Fusion Method To ascertain the efficacy of our pro-
posed fusion layer in amalgamating different token types
for the prediction of gene expression levels, we compare
TRIPLEX’s performance when the fusion layer is replaced
with alternative methods: element-wise summation, con-
catenation, and attentional pooling. In the case of atten-
tional pooling, we dynamically compute feature weights us-
ing a neural network, subsequently deriving a weighted sum
of the features, as illustrated in [7].
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C.4. Computational Cost Comparison

Table 1 provides a detailed comparison of the computa-
tional costs between TRIPLEX and the baseline models,
calculated using a single slide sample for each fold in each
dataset. This table includes average values for Multiply-
Accumulate Operations (MACs), the number of parame-
ters for each model, and both training and testing times
across all folds. It’s important to note that the training time
is gauged based on the duration required to complete 10
epochs.

While TRIPLEX, with its additional inputs, has higher
training time compared to other baselines, two observa-
tions particularly highlight its efficiency: 1) TRIPLEX’s
feature extraction technique and integration method effi-
ciently limit its parameters to approximately 20 million,
which, while comparable to the baselines, allows TRIPLEX
to still achieve state-of-the-art performance. This demon-
strates the model’s ability to balance complexity with high
performance. 2) Additionally, TRIPLEX shows compara-
ble testing times to other leading models (ST-Net, EGN,
BLEEP), indicating that its speed remains competitive for
practical applications after training. This balance between
training complexity and testing efficiency underscores the
model’s practical applicability in real-world scenarios.

Dataset BC1
MACs(G) # Param(M) Training Time(s) Testing Time(ms)

ST-Net 1002 7 244.2 201.7
HisToGene 52 153 291.5 2.55

Hist2ST 110 107 254.9 7.62
EGN 1823 162 407.6 52.67

BLEEP 631 11 119.7 109.5
TRIPLEX 657 22 410.9 53.21

Dataset BC2
MACs(G) # Param(M) Training Time(s) Testing Time(ms)

ST-Net 1465 7 508.7 295.0
HisToGene 77 153 329.5 2.33

Hist2ST 20 37 193.0 5.54
EGN 865 39 722.1 31.58

BLEEP 923 11 207.2 72.93
TRIPLEX 960 20 1117.3 76.27

Dataset SCC
MACs(G) # Param(M) Training Time(s) Testing Time(ms)

ST-Net 1928 7 153.9 385.6
HisToGene 18 27 93.70 3.12

Hist2ST 13 14 57.5 5.37
EGN 5563 223 368.8 157.83

BLEEP 1215 11 86.4 95.41
TRIPLEX 1263 19 340.3 99.90

Table 1. Computational cost comparison

C.5. Comparison of MAE in the cross-validation
experiments

Table 2 shows the evaluation of the MAE of the cross-
validation results on ST data, which is not included in the
main text due to space limitations.

BC1 BC2 SCC
Source Model MAE MAE MAE

ST-Net [5] 0.389± 0.03 0.349± 0.02 0.428± 0.05
EGN [12] 0.377± 0.04 0.337± 0.02 0.418± 0.06

Local BLEEP [10] 0.401± 0.03 0.369± 0.02 0.430± 0.04
TEM 0.385± 0.03 0.336± 0.02 0.433± 0.05
NEM 0.403± 0.06 0.375± 0.03 0.481± 0.10

HistoGene [9] 0.428± 0.07 0.335± 0.04 0.415± 0.07
Global Hist2ST [13] 0.413± 0.07 0.333 ± 0.02 0.924± 0.29

GEM 0.383± 0.05 0.352± 0.02 0.434± 0.12
Multiple TRIPLEX 0.362 ± 0.05 0.343± 0.02 0.404 ± 0.07

Table 2. Cross validation result on each ST dataset. The mean and
standard deviation of MAE from the cross-validation results are
displayed.

C.6. Contribution of the Neighbor View size

We examine how the performance of TRIPLEX is influ-
enced by the expansion of the neighbor view size. Here, the
term ”number of neighbors” refers to the count of 224x224
patches along an axis. Results are illustrated in Figure 7.
When evaluated in terms of MES and PCC, it is observed
that enlarging the neighbor view size does not consistently
result in performance gains. In fact, as the number of neigh-
bors increases, a decrease in performance is noted. This pat-
tern suggests that 1,120x1,120 sized neighbor view (num-
ber of neighbors: 5) is an efficient configuration, striking
a balance between capturing detailed neighboring informa-
tion relevant to the target and maintaining manageable com-
putational costs.

C.7. Performance Discrepancy Between Our Ex-
perimental Results and Existing Implemen-
tations

Our experimental results show notable deviations from
those reported in the original publications of the baseline
models. We attribute this discrepancy primarily to three
factors, as detailed in Section 4.1 in the main text: 1) the
use of an alternative cross-validation strategy, 2) a different
approach to normalization, and 3) variations in how metrics
are calculated.

Specifically, the performance gap observed for HisTo-
Gene and Hist2ST can be largely traced back to the first
factor. In the original studies, these models are tested
on the BC1 and SCC datasets using Leave-one-out-cross-
validation (LOOCV), where each sample is treated inde-
pendently. This approach potentially skews the evaluation,
as it allows for the possibility of using replicates from the
same sample in both training and testing phases. In contrast,
our study employs Leave-one-patient-out-cross-validation
(LOPCV), which we believe offers a stricter and more re-
alistic assessment of model performance by ensuring no
overlap between training and testing sets for a given pa-
tient. Table 3 compares the results obtained from these two
cross-validation methods. As hypothesized, the change to
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LOPCV significantly affects the performance of both mod-
els, reinforcing our assertion about the importance of the
rigorous cross-validation approach in model evaluation.

Model HisToGene
MSE MAE PCC(M) PCC(H)

LOPCV (ours) 0.314 0.428 0.168 0.302
LOOCV [9, 13] 0.223 0.364 0.186 0.315

Model HisT2ST
MSE MAE PCC(M) PCC(H)

LOPCV (ours) 0.285 0.413 0.118 0.248
LOOCV [9, 13] 0.163 0.313 0.251 0.416

Table 3. Result comparison for different cross-validation method
in BC1 dataset

In the case of EGN, factors 2) and 3) — different nor-
malization methods and variations in metric calculations —
significantly contribute to the performance gap observed.
Our approach to normalization for ST data involves divid-
ing each gene’s count by the total expression count of each
spot and applying a log transformation, complemented by
the expression smoothing method proposed by ST-Net [5].
Conversely, EGN’s methodology adds a pseudo count of 1,
applies a log transformation, and then conducts min-max
normalization using each gene’s max and min count values
from all training data. We hypothesize that EGN’s approach
may inadvertently amplify technical variations due to batch
effects, diminishing the focus on biologically relevant vari-
ations, which is central to our study. Therefore, we opt for a
normalization method that we believe better preserves these
biological variations. Regarding evaluation methods, as de-
tailed in Section 1, our approach involves predicting gene
expression levels for each slide and averaging the outcomes
across multiple slides. In contrast, EGN evaluates all spots
of the validation data in a single assessment. Given the clin-
ical context where a WSI is typically provided for gene ex-
pression prediction, we find our method more aligned with
real-world applications. To further explore these method-
ological differences, we conduct experiments substituting
our methods with those of EGN (s/ norm, s/ eval, and both
combined as s/ norm&eval). The experiment results, de-
picted in Table 4, confirm that the original results reported
in EGN’s literature are reproducible when adopting their
specific normalization and evaluation strategies.

In summary, our findings demonstrate that the discrep-
ancies observed between our experimental results and those
reported in existing literature arise primarily from differ-
ences in methodological approaches, particularly in cross-
validation, normalization, and evaluation metrics, rather
than from a lack of extensive hyperparameter tuning.
These results highlight the critical impact of methodologi-
cal choices in computational biology and the need for metic-

Model EGN
MSE MAE PCC(M) PCC(H)

Ours 0.1923 0.3366 0.1112 0.2025
s/ eval 0.1930 0.3365 0.1494 0.3056
s/ norm 0.0005 0.0173 0.1595 0.2193

s/ eval&norm [12] 0.0003 0.0134 0.2003 0.3011

Table 4. Result comparison for different evaluation and normal-
ization method in BC2 dataset.

ulous methodological reporting to ensure accurate compar-
isons and reproducibility.

C.8. Additional Ablation Studies

We conduct further ablation studies on the BC1, BC2, and
Visium datasets, with the results detailed in Tables 5, 6, and
7 for each dataset respectively. In these studies, we examine
the impact of different components of our model to under-
stand their individual contributions to performance. A con-
sistent trend observed across all datasets, aligning with find-
ings from the SCC dataset, is the pronounced significance
of the GEM. The GEM, central to our model’s architecture,
has shown to be particularly influential in enhancing perfor-
mance.

Dataset BC1
MSE MAE PCC(M) PCC(T)

w/o TEM 0.229 0.363 0.315 0.501
w/o NEM 0.240 0.372 0.295 0.478
w/o GEM 0.228 0.362 0.266 0.448
w/o PEG 0.227 0.363 0.294 0.466

PEG 0.230 0.365 0.304 0.485
Summation 0.241 0.375 0.293 0.475

Concatenation 0.239 0.372 0.297 0.484
Attentional fusion 0.237 0.370 0.311 0.502

w/o fusion loss 0.246 0.377 0.295 0.481
Ours 0.228 0.362 0.314 0.497

Table 5. Ablation studies in BC1 dataset

C.9. Detailed Hyperparameter Settings

In our study, hyperparameter tuning for each dataset is
meticulously conducted using the WanDB platform [1]. We
set the range of hyperparameters based on the defaults re-
ported in relevant literature, as shown in Table 8. For each
model and dataset combination, we undertake a minimum
of 100 experiments to determine the optimal settings.

The hyperparameters for each baseline model are de-
tailed in their respective publications [9, 10, 12, 13]. Re-
garding TRIPLEX, ’depth1’, ’depth2’, and ’depth3’ re-
fer to the depths of the transformer blocks in the Fusion

5



Dataset BC2
MSE MAE PCC(M) PCC(T)

w/o TEM 0.203 0.346 0.208 0.356
w/o NEM 0.202 0.344 0.199 0.347
w/o GEM 0.193 0.336 0.159 0.291
w/o PEG 0.192 0.335 0.194 0.341

PEG 0.196 0.338 0.201 0.350
Summation 0.203 0.346 0.186 0.335

Concatenation 0.205 0.346 0.190 0.337
Attentional fusion 0.198 0.340 0.198 0.354

w/o fusion loss 0.211 0.349 0.203 0.355
Ours 0.202 0.343 0.206 0.352

Table 6. Ablation studies in BC2 dataset

Dataset 10X Visium
MSE MAE PCC(M) PCC(T)

w/o TEM 0.338 0.453 0.099 0.250
w/o NEM 0.322 0.443 0.107 0.238
w/o GEM 0.325 0.439 0.087 0.237
w/o PEG 0.339 0.455 0.087 0.264

PEG 0.371 0.475 0.109 0.248
Summation 0.342 0.451 0.106 0.225

Concatenation 0.332 0.446 0.089 0.232
Attentional fusion 0.327 0.447 0.110 0.267

w/o fusion loss 0.328 0.442 0.050 0.206
Ours 0.306 0.427 0.136 0.293

Table 7. Ablation studies in Visium dataset

Layer, Global Encoder, and Neighbor Encoder, respec-
tively. ’num heads’ denotes the number of heads in the
multi-head self-attention mechanism of each transformer
block, the ’mlp ratio’ is the ratio of the MLP dimension
to the embedding dimension within the transformer’s Feed-
Forward network, and ’dropout’ represents the dropout
probability in Transformer block. These hyperparameters
are fine-tuned to maximize the PCC(M). The final hyperpa-
rameters, as determined through our extensive experiments,
are presented in Table 9.

D. Additional Visualizations

In this section, we present additional visualizations focus-
ing on the spatial expression distribution prediction of the
GNAS gene, as shown in Figures 8 to 11. These visualiza-
tions include four additional samples from the BC1 dataset
and 20 samples from the BC2 dataset. In analyzing these
visualizations, we observe a high degree of consistency be-
tween the GNAS expression distribution and the annota-
tions provided by pathologists. Notably, the predictions
made by TRIPLEX demonstrate a markedly high accuracy,
as quantitatively assessed against benchmark metrics, and

Model HisToGene
Parameter Distribution Min/Values Max
n layers int uniform 2 8
dim categorical 512,1024,2048
num heads categorical 4,8,16,32
dropout categorical 0.1,0.2,0.3,0.4
Model HisT2ST
Parameter Distribution Min/Values Max
depth1 int uniform 1 4
depth2 int uniform 2 8
depth3 int uniform 1 4
heads categorical 4,8,16
channel categorical 16,32,64,128
bake categorical 3,5,7
kernel size categorical 3,5,7
Model EGN
Parameter Distribution Min/Values Max
dim categorical 512,1024,2048
mlp dim categorical 1024,2048,4096
depth categorical 2,4,6,8
heads categorical 4,8,16
bhead categorical 4,8,16
bdim categorical 32,64,128
Model BLEEP
Parameter Distribution Values
projection dim categorical 128,256,512,1024,2048
dropout categorical 0.1,0.15,0.2,0.25,0.3,0.35,0.4
Model TRIPLEX
Parameter Distribution Min/Values Max
depth1 int uniform 1 4
depth2 int uniform 2 4
depth3 int uniform 1 4
dropout categorical 0.1,0.2,0.3,0.4
mlp ratio categorical 1,2,4
num heads categorical 4,8,16

Table 8. Hyperparameters to be tuned

align closely with tumor annotations. This consistency is
particularly evident when compared to the predictions from
other baseline models [5, 9, 10, 12, 13].
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Figure 1. An example of input data for TRIPLEX from BC1 dataset. (Top) Difference between the input data used in NEM and the 25
adjacent spot images around the target spot image. The pre-defined spot image is marked with a blue boundary, while the input data for
the NEM model is marked with a red boundary. The ’+’ within each image indicates the center coordinates. (Bottom) All input data for
the same sample. The input data for TEM is marked with a blue boundary, the input data for NEM is marked with a red boundary, and the
input data for GEM is marked with a green boundary. (The spot marked with the blue boundary is the target spot image.)
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Figure 2. Overview of proposed positional encoding for histology images (APEG). We utilize the coordinates of each spot to reposition
the feature token to its original location, apply convolution, and then restore it to its original shape.
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Figure 3. Dataset summary of ST data used for cross-validation. (Left) Number of spots per sample in each dataset. The x-axis label
represents each patient, with multiple samples existing for every patient. (Right) Log-transformed count values for each gene in the
datasets. The 250 genes utilized in this study correspond to the top genes within the blue region.

9



Figure 4

Figure 5

Figure 6
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Figure 7. The performance varies with the size of the neighbor view. Variations in MSE (Left) and PCC (M) (Right) relative to the size.
”Number of neighbors” represents the count of 224x224 patches along an axis

Figure 8. Additional visualization for predicting GNAS gene expression levels in BC1 dataset. We display the Pearson Correlation
Coefficient (PCC) values between the ground truth and the prediction of the GNAS expression level estimated by each model.
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Figure 9. Additional visualization for predicting GNAS gene expression levels in BC2 dataset.
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Figure 10. Additional visualization for predicting GNAS gene expression levels in BC2 dataset.
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Figure 11. Additional visualization for predicting GNAS gene expression levels in BC2 dataset.
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Model HisToGene
Parameter BC1 BC2 SCC
n layers 4 3 5
dim 2048 2048 512
num heads 4 16 4
dropout 0.4 0.3 0.4
Model HisT2ST
Parameter BC1 BC2 SCC
depth1 4 2 2
depth2 3 6 6
depth3 4 1 2
heads 8 4 8
channel 64 32 16
bake 3 5 7
kernel size 3 3 7
Model EGN
Parameter BC1 BC2 SCC
dim 2048 512 2048
mlp dim 2048 4096 2048
depth 6 6 8
heads 4 8 16
bhead 16 4 16
bdim 128 64 64
Model BLEEP
Parameter BC1 BC2 SCC
projection dim 128 128 128
dropout 0.4 0.3 0.35
Model TRIPLEX
Parameter BC1 BC2 SCC
depth1 1 3 2
depth2 3 3 2
depth3 3 4 4
dropout1 0.2 0.4 0.1
dropout2 0.1 0.1 0.1
dropout3 0.3 0.3 0.3
mlp ratio1 4 4 4
mlp ratio2 4 2 1
mlp ratio3 1 4 1
num heads1 4 16 8
num heads2 16 8 16
num heads3 16 8 16

Table 9. Selected hyperparameters in each dataset
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Maaskola, Joakim Lundeberg, and James Zou. Integrating
spatial gene expression and breast tumour morphology
via deep learning. Nature biomedical engineering, 4(8):
827–834, 2020. 2, 4, 5, 6

[6] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 2

[7] Maximilian Ilse, Jakub Tomczak, and Max Welling.
Attention-based deep multiple instance learning. In Inter-
national conference on machine learning, pages 2127–2136.
PMLR, 2018. 3

[8] Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil
Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko,
Michael Brenner, Po-ru Loh, and Soumya Raychaudhuri.
Fast, sensitive and accurate integration of single-cell data
with harmony. Nature methods, 16(12):1289–1296, 2019. 3

[9] Minxing Pang, Kenong Su, and Mingyao Li. Leverag-
ing information in spatial transcriptomics to predict super-
resolution gene expression from histology images in tumors.
bioRxiv, 2021. 3, 4, 5, 6

[10] Ronald Xie, Kuan Pang, Gary D. Bader, and Bo Wang. Spa-
tially resolved gene expression prediction from he histology
images via bi-modal contrastive learning, 2023. 3, 4, 5, 6

[11] Yan Yang, Md Zakir Hossain, Tom Gedeon, and Shafin Rah-
man. S2fgan: semantically aware interactive sketch-to-face
translation. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 1269–1278,
2022. 3

[12] Yan Yang, Md Zakir Hossain, Eric A Stone, and Shafin Rah-
man. Exemplar guided deep neural network for spatial tran-
scriptomics analysis of gene expression prediction. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 5039–5048, 2023. 3, 4, 5,
6

[13] Yuansong Zeng, Zhuoyi Wei, Weijiang Yu, Rui Yin, Yuchen
Yuan, Bingling Li, Zhonghui Tang, Yutong Lu, and Yue-
dong Yang. Spatial transcriptomics prediction from histol-

ogy jointly through transformer and graph neural networks.
Briefings in Bioinformatics, 23(5):bbac297, 2022. 3, 4, 5, 6

16


	. Evaluation methodology for multi-output regression problem
	. Method Details
	. Processing of input data
	. Method details for Target Encoder
	. Method details for Neighbor Encoder
	. Method details for Global Encoder
	. Method details for Fusion Layer
	. Implementation Details for Baselines

	. Additional implementation details and experimental results
	. Description of datasets
	. Implementation Details for Experiments
	. Implementation Details for Ablation Studies
	. Computational Cost Comparison
	. Comparison of MAE in the cross-validation experiments
	. Contribution of the Neighbor View size
	. Performance Discrepancy Between Our Experimental Results and Existing Implementations
	. Additional Ablation Studies
	. Detailed Hyperparameter Settings

	. Additional Visualizations

